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ABSTRACT. Let k be any algebraically closed field in any characteristic, let R
be any regular local ring such that R contains k as a subring, the residue field
of R is isomorphic to k as k-algebras and dim R > 1, let P be any parameter
system of R and let z € P. We consider any ¢ € R with ¢ # 0.

In our main theorem we assume several conditions depending on P, z and
Newton polyhedrons. By our assumptions the normal fan ¥ of the Newton
polyhedron I'y (P, ¢) of ¢ over P has simple structure and we can make a
special regular subdivision ¥* of ¥ called an upward subdivision, starting from
a regular cone with dimension equal to dim R and repeating star subdivisions
with center in a regular cone of dimension two. Let X and o : X — Spec(R)
denote the toric variety over Spec(R) and the toric morphism associated with
¥*. X is irreducible and smooth and o is a composition of finite blowing-ups
with center in a closed irreducible smooth subscheme of codimension two. We
consider any closed point a € X such that o(a) is the unique closed point of
Spec(R), the local ring Ox q of X at a and the morphism ¢* : R — Ox 4
of local k-algebras induced by o. We show that our numerical invariant of
o*(¢) € Ox o measuring the badness of the singularity is strictly less than the
same invariant of ¢ € R and the singularity ¢ is strictly improved by o.

We notice that this result opens a way toward the theory of resolution of
singularities in arbitrary characteristic. We add several submain theorems to
make bridges toward it and to show that our assumptions of the main theorem
are not strong.

By these results we can show that in a mathematical game with two players
A and B related to the resolution of singularities of ¢, the player A can always
win the game after finite steps. It follows “the local uniformization theorem
in arbitrary characteristic and in arbitrary dimension”.

1. INTRODUCTION

For any local ring S we denote the unique maximal ideal of S by M (S) and the
set of invertible elements of S by S*. We have S = M(S)U S*, M(S)NS* =0,
M (S) € Spec(S) and M (S) is the unique closed point of the affine scheme Spec(S).
For any noetherian local ring S, we denote the completion of S by S¢. S¢is a
noetherian local ring containing S as a local subring. Let Zo and Z; denote the
set of non-negative integers and the set of positive integers respectively.
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Let k be any algebraically closed field in any characteristic, and let R be any
regular local ring such that it contains k as a subring, the residue field R/M (R)
of R is isomorphic to k as k-algebras, R is a localization of a finitely generated
k-algebra and dim R > 1.

For any ¢ € R® with ¢ # 0 and any parameter system @ of R® by I'y (Q,¢) we
denote the Newton polyhedron of ¥ over Q.

Let P be any parameter system of R and let z € P be any element. P is also a
parameter system of R°. By R’ we denote the localization of the k-subalgebra of
R generated by P — {z} by its maximal ideal generated by P — {z}. The ring R’
is a local k-subalgebra of R, it is a regular local ring of dimension dim R — 1, and
P — {z} is a parameter system of R'.

Consider any ¢ € R with ¢ # 0.

If the Newton polyhedron I'y (P, ¢) is non-degenerate, then we can construct
explicitly an embedded resolution of the singularity ¢ corresponding to any regular
subdivision of the normal fan of T'} (P, ¢) using the toric theory (Khovanskii [20],
Oka [23], Cox [7], Fulton [8], Kempf et al. [19].). We can give resolution of the sin-
gularity ¢ explicitly even if the characteristic of k is positive under the assumption
of non-degeneracy.

In this article we consider the case where the Newton polyhedron 'y (P, ¢) is
not necessarily non-degenerate using the toric theory and T'; (P, ¢).

Since R is a UFD, we have an invertible element u € R*, a finite set  of
irreducible elements of R and a mapping a : Q — Z, satisfying ¢ = u ][], cq W),
We take any u, ) and a satisfying these conditions. Let

E={weQow/0w e M(R), and any x € P — {2} does not divide w}.

We say that an element ¢ € R is a main factor of the triplet (P, z,¢), or a
z-main factor over P of ¢, if ¢ = v][] .= w¥«@) for some v € R*. Since R is a
UFD, the condition that ¢ € R is a main factor of (P, z, ¢) does not depend of the
choice of u, Q) and a we used for the definition.

If both ¢ € R and ¥’ € R are main factors of (P, z,¢), then ¢ = uty)’ for some
u€ R* and T (P,¢)) =T (P, ).

Any element w € R° satisfying w = 2" + 2?2_01 W' (i)z* for some h € Zg and some
mapping w’ : {0,1,...,h — 1} = M(R'®) is called a z- Weierstrass polynomial over
P, and the non-negative integer h is called the degree of ¢.

Below, we defne and use concepts of z- Weierstrass type, z-simple and z-removable
face for T'y (P, ¢) and numerical invariants inv(P, z, ¢) and inv2(P, z,¢). (In Sec-
tion 2 we define them again in more general situation.)

By definition, T'; (P, ¢) is of z-Weierstrass type, if and only if, we can write
uniquely ¢ = u Hmep_{z} 2%(®)y for some u € R, some mapping a : P—{z} — Zg
and some z-Weierstrass polynomial w € R¢ over P.

We consider the case where I'; (P, @) is of z-Weierstrass type. Note that if the z-
Weierstrass polynomial w just above has degree h, then I'y (P, ¢) has a typical vertex
corresponding to the monomial (erpf{z} 22®)) 2" which we call the z-top vertex
of T (P, ¢). We say that T'y (P, ¢) is z-simple, if T'. (P, ¢) is of z-Weierstrass type
and moreover, any compact face of 'y (P, ¢) has dimension 1 or 0. If dim R < 2,
then T'y (P, ¢) is necessarily z-simple.

Let ¥ € R be a main factor of (P, z, ). It is easy to see that I'; (P, ) is also of
2-Weierstrass type and the z-top vertex of I'y (P, ) corresponds to the monomial
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2% for some k € Zy with k < h. We define inv(P, z,¢) = k, since k € Z, does
not depend on the choice of a main factor 1 of (P, z,$). The non-negative integer
inv(P, z, ¢) is the main numerical invariant measuring the badness of the singularity
¢ in our theory. inv(P, z,¢) # 1. inv(P, z,¢) = 0, if and only if, ¢ is a product of an
invertible element of R, elements in P — {z} admitting non-negative multiplicities,
and some elements w of M(R) of order one with dw/0z € R* admitting positive
multiplicities.

Consider the case where I'y (P, ¢) is of z-Weierstrass type and any « € P — {z}
does not divide ¢. In this case the z-top vertex V, of 'y (P, ¢) corresponds to the
monomial z" for some h € Zy. Consider any face F of I'y (P, ¢). We say that F
is z-removable, if F' contains the z-top vertex V., F' contains a vertex of I'y (P, ¢)
corresponding to a monomial in a form HmGPf{z} 22 2k with k < h and after
some coordinate change sending z to z itself for any 2 € P — {2} and sending z
to z 4 x for some x € M(R'®), F becomes containing no vertex corresponding to a
monomial in a form HzGPf{z} 2@ 2 with k < h.

Instead of non-degeneracy, we assume that I'y (P, ¢) is z-simple, and the Newton
polyhedron over P of the main factor of ¢ has no z-removable faces. (Our assump-
tions depend on the element z of P. We can gradually understand that they are
necessary and not strong.) Since 'y (P, ¢) is z-simple, the normal fan ¥ of T'y (P, ¢)
has simple structure. Note that the support |X| of ¥ is a regular cone with dimen-
sion equal to dim R. Starting from the fan F(|X|) consisting of |X| and its faces
and repeating star subdivisions with center in a regular cone of dimension two, we
construct most effectively a special regular subdivision ¥* of ¥ with |X*| = |3,
which we call an upward subdivision of ¥. Let X and o : X — Spec(R) denote the
toric variety over Spec(R) and the toric morphism associated with ¥*. Note that
the scheme X is separated, irreducible, smooth and of finite type over Spec(R),
and the morphism ¢ is a composition of finite blowing-ups with center in a closed
irreducible smooth subscheme of codimension two.

In our main theorem, Theorem £l we show that the singularity ¢ is improved by
the morphism o. Theorem [£.1] has two conclusions. The first conclusion treats the
case of inv(P, z,¢) > 0. It claims that at any closed point a € X with o(a) = M(R)
there exists a parameter system P of Ox_, of the local ring of X at a and an element
z € P such that if we consider the injective homomorphism of local k-algebras
0*: R — Ox, from R to Ox,, induced by o, then o*(x) has normal crossings over
P for any z € P, the Newton polyhedron I'y (P,c*(¢)) is of z-Weierstrass type,
and inv(P, z,0%(¢)) < inv(P, z, ¢).

Since inv(P, 2,0%(¢)) < inv(P, z, ¢), we can claim that any hypersurface singu-
larity can be improved by a composition of finite blowing-ups which we can describe
explicitly associated with the Newton polyhedron of ¢, if we assume several condi-
tions related to Newton polyhedrons.

We will explain the second conclusion treating the case inv(P, z, ¢) = 0 later.

Now, notice that this result opens a way toward the theory of resolution of sin-
gularities in arbitrary characteristic, since it holds even if the characteristic of the
ground field k is positive, inv(P, z,¢) is a very explicit invariant measuring the
badness of a singularity ¢, and it strictly decreases under a composition of finite
blowing-ups. Contrary, the key concept in Hironaka’s resolution theory in charac-
teristic zero is the maximal contact and it is not effective in positive characteristic
cases. (Hironaka [15], [14], [12](II, Chapter III, sections 7-10), Giraud [10], [9I,
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Hauser [I1].) Besides, it is known that there exist metastatic singularities (Hiron-
aka’s terminology in Hironaka [I8]) or wild singularities (Hauser’s terminology in
Hauser [11]) in the case of positive characteristic. For these singularities in positive
characteristic case, under some blowing-ups, there appears a point in the inverse
image of the singular point under consideration such that the invariant measuring
the badness of a singularity increases, when we try to follow the analogy of Hiron-
aka’s resolution theory in characteristic zero. To overcome this phenomenon some
programs for resolution of singularities in characteristic positive may become very
complicated.

Contrary to that the composition of blowing-ups is explicitely given associated
with the Newton polyhedron of the singularity in our theory, it is very hard to give
it explicitely in Hironaka’s theory.

We add several submain theorems in order to make bridges to the resolution
theory in arbitrary characteristic and to show that our assumptions of the main
theorem are not strong.

We continue to consider the above situation concerning a € X, R, 0*(¢), P and
z. T 1 (P,0%(¢)) is of z-Weierstrass type, and inv(P, z,0*(¢)) < inv(P, z, ¢). If the
Newton polyhedron over P of the main factor of (P, z,0*(¢)) has no z-removable
faces, the Newton polyhedron T'y (P, 0*(¢)) is z-simple, and inv(P, z,0*(¢)) > 0,
then we can apply the first conclusion of our main theorem again after replacing
the quadruplet (R, P, 2z, ¢) by (Ox.4, P, Z,0*(¢)) and we can make inv(P, z,0*(¢))
further smaller. However, these assumptions are not necessarily satisfied. Our
submain theorem Theorem [£.4] claims that we can make these assumptions satisfied
after some blowing-ups. However, for Theorem .4] another induction assumption
on dim R is necessary.

Note here that R’ is a local k-subalgebra of R and dim R’ = dim R — 1 < dim R,
and any ¢ € R’ with ¢’ # 0 has normal crossings over P — {z} if dim R < 2.
Therefore, we decide that we use induction on dim R, and we can assume the
following claim (x):

() For any ¢ € R’ with ¢’ # 0, there exists a composition ¢’ : X’ — Spec(R’)
of finite blowing-ups with center in a closed irreducible smooth subscheme
such that the divisor on X’ defined by the pull-back ¢"*(¢') € Ox/(X') of
¢’ by ¢’ has normal crossings.

Claim (%) is true, if dim R < 2.

Let ¢’ : X’ — Spec(R’) be any composition of finite blowing-ups with centers in
closed irreducible smooth subschemes. The scheme X’ is smooth. We consider a
morphism Spec(R) — Spec(R’) induced by the inclusion ring homomorphism R’ —
R, the product scheme X = X' Xg,e0(rr) Spec(R), the projection o : X — Spec(R),
and the projection 7 : X — X’. We know the following (Lemma B35 ):

(1) The morphism o is a composition of finite blowing-ups with center in a
closed irreducible smooth subscheme. The scheme X is smooth.

(2) Let Spec(R/zR) denote the prime divisor on Spec(R) defined by z € R.
The pull-back o*Spec(R/zR) of Spec(R/zR) by o is a smooth prime divisor
of X, and o*Spec(R/2R) D o~ (M(R)).

(3) The projection 7 : X — X’ induces an isomorphism o*Spec(R/zR) — X'.

(4) For any closed point a € X and any parameter system @’ of the local ring
Ox' x(a) of X" at 7(a), o(a) = M(R) and {0*(2)} Un*(Q’) is a parameter
system of the local ring Ox , of X at a, where 0* : R = Ox , denotes the
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homomorphism of local k-algebras induced by o and 7* : Ox/ r(a) = Ox.a
denotes the homomorphism of local k-algebras induced by .

We explain the conclusions of Theorem [£.4l We have three conclusions.

In the first conclusion, we assume the above (x) and that 'y (P,¢) is of z-
Weierstrass type, and inv(P, z, ¢) > 0.

Then, there exists a composition ¢’ : X’ — Spec(R’) of finite blowing-ups with
center in a closed irreducible smooth subschemes with the following properties:
We consider the product scheme X = X’ Xgpec(r/) Spec(RR), the projection o :
X — Spec(R) and the projection w : X — X’. At any closed point ¢ € X with
o(a) = M(R), there exists a parameter system @ of Ox'.x(a) With the following
properties. Let P = {0*(2)} Um*(Q):

(1) ¢’*(z) has normal crossings over @ for any z € P — {z}.
(2) One of the following two conditions holds:
(a) inv(P,0*(2),0%(¢)) = inv(P, z, ¢) and there exists an element
z € M(Ox,,) such that 9z/00*(z) € O, P; = {z} U (Q) is
a parameter system of Ox o, 't (Ps,0%(¢)) is of z-Weierstrass type,
'y (P:, %) has no z-removable faces where 1) € Ox,, denotes a main
factor of (Ps, 2, 0% (¢)), and inv(Px, 2, 0*(¢)) = inv(P, 2, #).
(b) inv(P,0*(2),0%(¢)) < inv(P, 2, ), and T4 (P,0*(¢)) is of
0*(z)-Weierstrass type.

By the above first conclusion we can make our assumptions stronger.

In the second conclusion, we assume the above (%) and that I'y (P, ¢) is of z-
Weierstrass type, I'y (P, ) has no z-removable faces where ¢ € R denotes a main
factor of (P, z,¢), and inv(P, z, ¢) > 0.

Then, there exists a composition ¢’ : X’ — Spec(R’) of finite blowing-ups with
center in a closed irreducible smooth subschemes with the following properties:
We consider the product scheme X = X’ Xgpec(r/) Spec(R), the projection o :
X — Spec(R) and the projection m : X — X'. At any closed point a € X with
o(a) = M(R), there exists a parameter system Q of Ox/ r(,) with the following
properties. Let P = {0*(2)} Um*(Q):

(1) ¢’*(z) has normal crossings over @ for any z € P — {z}.
(2) T4 (P,c*(¢)) is o*(z)-simple.
(3) One of the following two conditions holds:
(a) inv(P,0*(2),0"(¢)) = inv(P, 2, $), and I'y (P, 1)) has no o* (z)-removable
faces where ¢ € Ox , denotes a main factor of (P,0*(2),*(¢)).
(b) inv(P,0*(2),0%(¢)) < inv(P, 2, $)

By the above second conclusion we can apply the first conclusion of our main
theorem Theorem [4.] again.

We can apply above three claims repeatedly and replace the ring R, the param-
eter system P, the element z € P and the non-zero element ¢ € R repeatedly. We
know that after finite sequences of compositions of blowing-ups and replacements
of the quadruplet (R, P, z, ¢) by (Ox.a, P,z 0*(¢)), any non-zero ¢ € R such that
'y (P, ¢) is of z-Weierstrass type is reduced to a non-zero ¢ € R satisfying the same
condition and inv(P, z, ) = 0.

Consider any element ¢ € R such that ¢ # 0, T' (P, ¢) is of z-Weierstrass type
and inv(P, z,¢) = 0.
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By definition ¢ is a product of an invertible element of R, elements in P — {z}
admitting non-negative multiplicities, and some elements w of M(R) of order one
with dw/0z € R* admitting positive multiplicities. Since R is a UFD, there exist
u € R*, a mapping a : P — {z} — Zg, a finite subset Q of M(R) and a mapping
b:Q — Z, satisfying the following three conditions:

(1) ¢ =u HIEPf{z} o) [Lico W),

(2) For any w € , w is of order one and dw/0z € R*.

(3) If w = vw’ for some w € Q, some w’ € Q and some v € R*, then v = 1 and
w=uw.

The number of elements {2 € Zj in 2 does not depend on the choice of u,a, 2, b
satisfying the above conditions. We define inv2(P, z, ¢) = Q) € Zj.

If inv2(P, z,¢) < 1, then ¢ has normal crossings.

We consider the case where ¢ does not have normal crossings. inv2(P, z, ¢) > 2.

It is easy to see that there exists Z € M (R) such that 0z/0z € R* and Z divides
¢. If we take any element z € M (R) satisfying these conditions and we replace the
pair (P, z) by ({Z} U (P — {z}), 2), then our element ¢ under consideration satisfies
the same assumptions as above and furthermore, z divides ¢.

We apply the third conclusion of our submain theorem Theorem [£.41

In the third conclusion, we assume the above (x) and that 'y (P, ¢) is of z-
Weierstrass type, z divides ¢, inv(P, z,¢) = 0, and inv2(P, z,¢) > 2.

Then, there exists a composition ¢’ : X’ — Spec(R’) of finite blowing-ups with
center in a closed irreducible smooth subschemes with the following properties:
We consider the product scheme X = X' Xgpee(rr) Spec(R), the projection o :
X — Spec(R) and the projection w : X — X'. At any closed point ¢ € X with
o(a) = M(R), there exists a parameter system Q of Ox/ r(,) with the following
properties. Let P = {0*(2)} Um*(Q):

o’*(z) has normal crossings over @ for any x € P — {z}.
Iy (P,0*(¢)) is o*(z)-simple.
0*(z) divides o*(¢).

inv(P,0*(2), 0 (9))
) inv2(P,0*(z),0*(¢)

)= 1nV2(P z,¢) >

By the above third conclusion of our submain theorem Theorem [£.4] we can make
our assumptions on ¢ further stronger. We can assume that T'y (P, ¢) is z-simple
and z divides ¢.

We apply the second conclusion of our main theorem Theorem [4.1]

In the second conclusion, we assume that I'; (P, @) is z-simple, z divides ¢,
inv(P, z,¢) =0, and inv2(P, z,$) > 2.

We consider the normal fan ¥ of T' (P, ¢) and an upward subdivision of ¥* of
Y. Let X and 0 : X — Spec(R) denote the toric variety over Spec(R) and the toric
morphism associated with >*.

Then, at any closed point a € X with o(a) = M(R) there exist a parameter
system P and an element z € P such that o*(x) has normal crossings over P,
[y (P,0%(¢)) is of z-Weiestrass type, inv(P, z,0*(¢)) = 0 and inv2(P, z,0*(¢)) <
inv2(P, z, ¢).

Since inv2(P,z,0%(¢)) < inv2(P,z,¢), singularity ¢ is improved by the mor-
phism o.
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By the above claims, after finite sequences of compositions of blowing-ups and
replacements of a quadruplet, any non-zero ¢ € R such that T'y(P,¢) is of z-
Weierstrass type is reduced to a non-zero ¢ € R with normal crossings.

The assumption of z-Weierstrass type for T'y (P, ¢) may be strong. Lemma
shows that for any ¢ € R with ¢ # 0 there exists a parameter system P of R and
an element z € P such that I'y (P, ¢) is of z-Weierstrass type.

By the above claims, after finite sequences of compositions of blowing-ups and
replacements of a quadruplet, any non-zero ¢ € R is reduced to a non-zero ¢ € R
with normal crossings.

Consider a mathematical game with two players A and B. At the start of the
game a pair (R, ¢) of any regular local ring R with dim R > 1 such that R contains
k as a subring, the residue field R/M(R) is isomorphic to k as k-algebras and R
is a localization of a finitely generated k-algebra, and any non-zero element ¢ € R
is given. We play our game repeating the following step. Before the first step we
put (S,¢) = (R,¢): At the start of each step, player A chooses a composition
o : X — Spec(S) of finite blowing-ups with center in a closed irreducible smooth
subscheme. Then, player B chooses a closed point a € X with o(a) = M(S). We
have a morphism o* : S = Ox , of local k-akgebras induced by o. If the element
o*(¢) € Ox 4 has normal crossings, then the palyer A wins. Otherwise we proceed
to the next step after replacing the pair (S,1) by the pair (Ox q,0*(¥)).

Note that the pair (5,) satisfies the same assumptions as (R, ¢) throughout
the game. A similar game can be found in Spivakovsky [24].

By our results outlined above we can conclude that player A can always win
the game after finite steps for any R and any non-zero element ¢ € R even if the
characteristic of the ground field k is positive. (Corollary L.8) It follows from
the valuation theory, “the local uniformization theorem in arbitrary characteristic
and in arbitrary dimension”. (Corollary A7, Zariski [26], Abhyankar [I], Zariski et
al. [27].)

The idea of watching the height of the z-top vertex of a Newton polyhedron of z-
Weierstrass type can be found in Hironaka [I3] in low dimensional cases. However,
he did not manipulate higher dimensional cases, because he did not apply the toric
theory. See also Cossart et al. [6].

Some ideas in this article are inspired by the appendix of Abhyankar [2] and
Bogomolov [4].

We do mot claim that the centers of blowing-ups are contained in the singular
locus of the subscheme to be resolved. It may be possible to improve our theorems
and to add stataments claiming that any smooth point of the hypersurface to be
resolved is not modified in our process of resolution.

The author expresses thanks to Herwig Hauser for valuable discussions with him
through e-mail.

We give proofs only to difficult parts of our claims. Most of our claims follow
from definitions.

TABLE OF CONTENTS

[ Introduction

Notations and basic concepts
Basic scheme theory

[ Main results

Basic theory of convex sets
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Convex cones and convex polyhedral cones

[7 Simplicial cones and regular cones

[ Fans

Convex pseudo polytopes

[I0 Star subdivisions

[IT] Tterated star subdivisions

Simpleness and semisimpleness

[I3] Basic subdivisions

[I4 Upper boundaries and lower boundaries

Height, characteristic functions and compatible mappings
The height inequalities

7 Upward subdivisions and the hard height inequalities
[I8 Schemes associated with fans

Proof of the main theorem

Proof of the submain theorems

The most important is “the hard height inequality” in Section [I7 It depends
heavily on “the height inequality” in Section In Sections [GHIE] we develop exact
theory of convex sets.

2. NOTATIONS AND BASIC CONCEPTS

We arrange notations and basic concepts related to Newton polyhedrons and
commutative rings.

By Z, Q, R and C we denote the ring of integers, the field of rational numbers,
the field of real numbers and the field of complex numbers respectively.

The following six notations are useful:

Zo = {t € Z|t > 0}, Zy = {t € Z|t > 0},

Q={teQt=0},  Q4={teQt>0}
Ry = {t € R|t > 0}, Ry = {t e R|t > 0}.

The set of all subset of a set Z is denoted by 24. The identity mapping of a set
Z is denoted by idz : Z — Z. The number of elements of a finite set Z is denoted
by #Z.

The set of all mappings from a set X to a set Y is denoted by

map(X,Y).

Let X be any set and let R be any ring. If Y is an abelian group (respectively, an
abelian semigroup, an R-module, a ring) , then the set map(X,Y’) has a natural
structure of an abelian group (respectively, an abelian semigroup, an R-module, a
ring). Let Z be a set and let Y be a subset of Z. Note that the inclusion mapping
Y — Z induces a injective mapping map(X,Y) — map(X, Z). Using this injective
mapping we regard map(X,Y) as a subset of map(X, Z). If Z is an abelian group
(respectively, an abelian semigroup, an R-module, a ring) and Y is a subgroup of
Z (respectively, a subsemigroup, an R-submodule, a subring), then map(X,Y) is a
subgroup (respectively, a subsemigroup, an R-submodule, a subring) of map(X, Z).
Consider any abelian group Z.
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Let J be any finite set and let X : J — 2% be any mapping. We define

ZX(j) ={zeZz= Zx(g) for some mapping = : J — Z satisfying
jeJ jed
z(j) € X(j) for any j € J} € 27.

Note that 3, ; X(j) isasubset of Z, >, ; X(j) = {0} if J=0,and >, ; X(j) =
(0, if and only if, J # () and X (j) = @ for some j € J.

We call 3, ; X(j) the sum or the Minkowski sum of subsets X (j),j € J.

For any r € Zy and for any mapping X : {1,2,... r} — 2% we also write

XM+ XQ)+-+X(r)= > X()
je{1,2,...r}

We denote —X = {z € Z|z = —z for some z € X} for any subset X of Z.
Let X be any set, and let Y be any subset of Z with 0 € Y. For any a €
map(X,Y) we denote

supp(a) = {z € Xla(z) # 0},
and we call supp(a) the support of a. It is a subset of X. We denote

map’(X,Y) = {a € map(X,Y)|supp(a) is a finite set.}.

map’(X,Y) C map(X,Y). If X is a finite set, we have map’(X,Y) = map(X,Y).

Let V be any vector space of finite dimension over R, and let X be any subset
of V.

The subset X is called conver, if X # () and for any two different points z,y of
X, the segment {a € V|a = (1 — t)x + ty for some t € R with 0 < ¢ < 1} joining
z and y is contained in X. It is called an affine space, if X # () and for any two
different points z,y of X, the line {a € V]a = (1 — t)x + ty € R for some ¢t € R}
joining x and y is contained in X. It is called a cone, if 0 € X and for any x € X
and any t € Rg, we have tz € X. It is called a convez cone, if 0 € X and for any
z,y € X and any t,u € Ry, we have tx + uy € X. It is called a vector space over
R, or simply a wvector space, if 0 € X and for any =,y € X and any t,u € R, we
have tx +uy € X. It is called a vector space over Q, if 0 € X and for any z,y € X
and any t,u € Q, we have tx +uy € X. It is called closed, if it is a closed subset
with respect to the natural Hausdorff topology of V.

In case X # ) the minimum convex subset (respectively, minimum affine space)
containing X with respect to the inclusion relation is denoted by conv(X) (respec-
tively, affi(X)). We define conv(f)) = affi(})) = (). The minimum cone (respectively,
minimum convex cone, minimum vector space over R, minimum vector space over
Q, minimum closed subset) containing X with respect to the inclusion relation is
denoted by cone(X) (respectively, convcone(X), vect(X ), Q-vect(X), clos(X)).

The subset X is called a convez polytope,(respectively, convex polyhedral cone), if
there exists a finite subset Y of V satisfying X = conv(Y) and Y # 0 (respectively,
X = convcone(Y)). The subset X is called a convex pseudo polytope, if there exist
finite subsets Y, Z of V satisfying X = conv(Y') + convcone(Z) and Y # (). The
subset X is called a simplicial cone, if X = convcone(C) for some R-basis B of V
and a subset C' of B. The subset X is called a lattice, if there exists a R-basis B
of V such that X = {a € V]a =), 5 A(b)b for some \ € map(B,Z)}. Any lattice
N of V is a free Z-submodule of V' with rankN = dim V.
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For any t € R we write
tX = {a € Vl]a = tx for some z € X }.
We know (—1)X = —X, and 0X = {0} if X # (. We write
stab(X) = {a € V|X + {a} C X},

and call it the stabilizer of X in V. The stabilizer of X in V is a subsemigroup of
V containing 0.

Let N be any lattice in V. The subset X is called a regular cone over N, if
X = convcone(C) for some Z-basis B of N and a subset C of B.

Any regular cone is a simplicial cone. Any simplicial cone is a convex polyhedral
cone. Any convex polyhedral cone is a convex pseudo polytope. Any convex poly-
tope is a convex pseudo polytope. Affine spaces, vector spaces, convex polytopes,
convex polyhedral cones, and convex pseudo polytopes are non-empty closed con-
vex subsets of V. If X is convex (respectively, a cone, a convex cone), then clos(X)
is again convex (respectively, a cone, a convex cone).

For any subset T of R and for any a € V' we denote

Ta={be V|b=ta for somet € T},

and it is a subset of V.
The dual vector space V* = Homg(V,R) is a vector space over R with dim V* =
dim V. The canonical bilinear form

(, ViV*xXV SR,

is defined by putting (w,a) = w(a) € R for any w € Homg(V,R) = V* and any
a € V. The dual vector space V** of V* is identified with V by the natural
isomorphism V' — V** of vector spaces over R.

We consider any vector space W of finite dimension over R and any homomor-
phism 7 : V' — W of vector spaces over R. Putting

7 (a) = ar € Homg(V,R) = V",

for any o € Homg (W, R) = W*, we define a mapping ©* : W* — V*, and we call 7*
the dual homomorphism of w. The dual homomorphism 7* is a homomorphism of
vector spaces over R. For any w € W* and for any a € V the equality (7*(w),a) =
(w,m(a)) holds. The dual homomorphism 7** of 7* is equal to 7.

Let N be any lattice in V. We denote

N* ={w e V*|{w,a) € Z for any a € N},

and call N* the dual lattice of N. Indeed, N* is a lattice in V*. The dual lattice
N** of N* is equal to V.
Let S be any convex cone in V. We denote

SY|V ={w € V*[{w,a) >0 for any a € S},

and call SV |V the dual cone of S over V. Indeed, S¥|V is a closed convex cone in
V*. The dual cone SY|VV|V* of SV|V is equal to the closure clos(S) of S in V.
SYIVVIV* = S, if and only if, S is closed in V. When we need not refer to V, we
also write simply SV, instead of SV|V.

Let P be any finite set. Note that map(P,R) is a vector space of finite dimension
over R with dimmap(P,R) = P, map(P,Z) is a lattice in map(P,R), map(P,Ry)
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is a regular cone over map(P,Z) in map(P,R) with vect(map(P,Rg)) = map(P,R),
and map(P,Zo) = map(P,Z) Nmap(P,Ry). Let z € P. Let y € P. Putting

1 ify==x
P _ )

we define an element f € map(P,Zy). Note that the subset {f7|x € P} of
map(P, Z) is an R-basis of map(P, R), it is a Z-basis of map(P,Z), and map(P, Ry)
= conveone({fI’|z € P}). The dual basis of {f'|z € P} is denoted by {fI'V|x €
P}. For any z,y € P

0 ifx#y.

Indeed, {fFV|z € P} is a R-basis of the dual vector space map(P,R)* of map(P,R),
it is a Z-basis of the dual lattice map(P,Z)* of map(P,Z), and map(P,Ry)" =
conveone({fIV|z € P}).

A commutative ring with the identity element is called simply a ring. The
identity element and the zero element of a ring are denoted 1 and 0 respectively.
We assume that any ring homomorphism A\ preserves the identity elements, in other
words, the equality A\(1) = 1 holds.

Let R be any ring. Let X be any subset of R and let S be any subring of R. The
minimum ideal of R containing X with respect the inclusion relation is denoted
by XR or RX. The minimum subring of R containing S and X with respect
to the inclusion relation is denoted by S[X]. In the case where X contains only
one element x, we also write simply xR, Rz, S[x], instead of {2} R, R{z}, S[{z}]
respectively. The set of all invertible elements in R is denoted by R*. R* C R and
R* is an abelian group with respect the multiplication. Any ring with a unique
maximal ideal is called a local ring. A ring R is local, if and only if, R — R* is
an ideal of R. The unique maximal ideal of a local ring R is denoted by M (R).
We have R = R* UM(R),R* N M(R) = 0 and 1 # 0 for any local ring R. A
subset R’ of a local ring R is called a local subring, if R’ is a subring of R, R’
is a local ring and M(R’) = M(R) N R'. The completion of a noetherian local
ring R is denoted by R°. R€ is a noetherian local ring containing R as a local
subring. M(R°) = M(R)R°. The inclusion ring homomorphism R — R induces
an isomorphism R/M(R) — R¢/M(R°) of residue fields. dim R® = dim R. The
smallest Henselian local subring of R¢ containing R as a local subring is called
the Henselization of R. We denote it by R". R" is a noetherian local subring
of R¢ containing R as a local subring. M(R") = M(R)R". The inclusion ring
homomorphism R — R" induces an isomorphism R/M (R) — R"/M (R") of residue
fields. dim R" = dim R.

Let R and R’ be local rings and A : R — R’ be a ring homomorphism. Always we
have A\(R*) C R'*. We say that X is a local homomorphism, if \(M(R)) C M(R’).
A is a local homomorphism, if and only if, A\™'(M(R’)) = M(R) , if and only if,
A YR = R*.

A noetherian local ring R is called complete, if R = R¢. A local ring R is called
regular, if R is noetherian and there exists a finite subset P of M (R) such that
P = dim R and PR = M(R).

A subset P of a regular local ring R is called a parameter system of R, if P is
finite with P = dim R and PR = M (R). If P is a parameter system of a regular

(FPY Py = {1 o=y,
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local ring R, then the completion R¢ of R and the Henselization R" are also regular
local rings and P is a parameter system of R¢ and R".

Let R be any regular local ring, let ¢ € R be any element and let P be any param-
eter system of R. We say that ¢ has normal crossings over P, if ¢ = u[],cp zh (@)
for some A € map(P,Zj) and some invertible element u € R*. We say that ¢ has
normal crossings, if ¢ has normal crossings over @ for some parameter system @ of
R.

Let k£ be any field. Let R be any regular local ring such that dimR > 1, R
contains k as a subring, and the residue field R/M (R) is isomorphic to k as algebras
over k. Let P be any parameter system of R. P is algebraically independent over
k. Let @ be any subset of P. Let R’ be the localization of k[Q] by the maximal
ideal kK[Q] N M(R) = Qk[Q]. R is a regular local subring of R containing k as a
subring. The residue field R'/M(R’) of R’ is isomorphic to k as algebras over k. Q
is a parameter system of R’. dim R’ = #Q. R’® is a local subring of R®, and R"" is
a local subring of R". (Matsumura [21], Milne [22].)

Let k be any field. Let A be any complete regular local ring such that dim A > 1,
A contains k as a subring, and the residue field A/M(A) is isomorphic to k as
algebras over k. Let P be any parameter system of A.

Let ¢ be any element of A. Then, there exists a unique element
¢ € map(map(P, Zy), k) with

o= Z c(A) H @),
Aemap(P,Zo) zeP

The infinite sum in the right-hand side is the limit with respect to the M (A)-adic
topology on A. We take the unique element ¢ € map(map(P, Z), k) satisfying the
above equality. The element ¢ depends on ¢ and P. Consider any A € map(P, Z).
We call A the indez, [[,.p2™® € A a monomial over P, ¢(A) € k a coefficient
of ¢, ¢(A) [ cp z2®) ¢ A a term of ¢, and > wep M) € Zo the degree of the
index A, of the monomial [, z*®), or of the term ¢(A) [T, p z*(®). Note that
0 € map(P, Zy). We denote ¢(0) by ¢(0) and we call ¢(0) € k, the constant term of
¢. & —d(0) € M(A). ¢(0) =0« ¢ € M(A). We denote

supp(P, ¢) = supp(c) = {A € map(P, Zo)|c(A) # 0},
and we call supp(P, ¢) the support of ¢ over P. It is a subset of map(P,Zy). Note
that ¢ =0 < ¢ =0 < supp(P, ¢) = 0.
Let F be any subset of map(P,R). We denote

ZAGsupp(P,qb)ﬁF C(A) HmEP xA(I) if Supp(P7 (b) nF # @7

pS(Pa F, ¢) = {0 if supp(P7 (;5) NF = @,

and we call ps(P, F, ¢) € A the partial sum of ¢ over P with respect to F.

Below, we consider the case ¢ # 0 for a while.

We define

FJr(Pv (b) = CODV(Supp(P, (b)) + map(P, RO)v

and call T (P, ¢) the Newton polyhedron of ¢ over P. By definition we have
'+ (P, ¢) C map(P,Ry) C map(P,R). We can show that there exists a non-empty
finite subset Y of supp(P, ¢) with Ty (P, ¢) = conv(Y) + map(P,Ry), and Ty (P, ¢)
is a convex pseudo polytope in map(P,R) with stab(I'y(P,¢)) = map(P,Ryp).
(Lemma 0.11] Lemma [0.12])
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Let w € map(P,Rg)Y be any element. We know that {(w,a)|a € supp(P,¢)}
C Ry, and the minimum element min{(w, a)|a € supp(P, ¢)} of {{w, a)|a € supp(P, ¢)}
exists. We define

ord(P,w, ¢) = min{{(w, a)|a € supp(P, ¢)} € Ry,

supp(P,w, ¢) = {a € supp(P, ¢)|(w, a) = ord(P,w, ¢)} C supp(P, ¢),
in(Pwg)= Y o) ][ ea

A€supp(P,w,¢) zeP

We consider the case ¢ = 0. We introduce a symbol oo satisfying the following
conditions: for any t € R, we have co > t,00 > t,00 # t,t < oo,t < o0o,t #
00,00+t =t + 00 = 00, and moreover 0o + 0o = co. Let w € map(P,Ry)Y be any
element. We define

ord(P,w,0) = oo

in(P,w,0) =0€ A.

Let w € map(P,Rg)Y be any element. In the general case including the case
of ¢ = 0, we have defined ord(P,w, ¢) € Ry U {oo} and in(P,w,¢) € A. We call
ord(P,w,®) € Ry U {oo} the order of ¢ over P with respect to w. By definition
ord(P,w, ¢) = co if and only if ¢ = 0. We call in(P,w, ¢) € A the initial sum of ¢
over P with respect to w. By definition in(P,w, ¢) = 0 if and only if ¢ = 0.

We can show that the following holds for any w € map(P,Rg)Y, any ¢ € A, any
¥ € A and any o € k with a # 0:

(1) ord(P,w,—¢) = ord(P,w, ¢). in(P,w, —¢) = —in(P,w, ¢).
ord(P,w, a¢) = ord(P,w, ¢). in(P,w, ap) = ain(P,w, ¢).
(Pw, ¢+ 1) > mln{ord(P,w, @), ord(P,w,¥)}.

( ) ord(P,w, ¢ + ) = min{ord(P,w, ¢),ord(P,w, )}, if and only if,
ord(P,w, ¢) # ord(P,w, ) or 1n(P w, P) + 1n(P w, ) # 0.
(4) ord(P,w, ¢py) = ord(P,w, ¢) + ord(P,w, ¥).
in(P,w, ¢vp) = in(P,w, ¢)in(P,w, ).
Let R be any regular local ring. We have Ny,ez, M (R)™ = {0}.
We define a mapping
ord : R — Zy U {o0}
by putting

ord(6) = {Z j " Za s ¢ € MO = MR

for any ¢ € R. For any ¢ € R with ¢ # 0 and any m € Z, we say that ¢ is of
order m, if ord(¢) = m.

Assume moreover, that R contains k as a subring, the residue field R/M(R) is
isomorphic to k as k-algebras and dim R = dim A. Under these assumptions the
completion R¢ of R is a ring containing R as a local subring and R° and A are
isomorphic as k-algebras. We take any isomorphism A : R — A of k-algebras. We
know that ord(¢) = ord(P, >, . p f£V, A(¢)) for any ¢ € R. Consider any element
x € R with M\(z) € P, any ¢ € R and any m € Zy. ord(P, fﬁ\;), A(¢)) > m, if and
only if, ¢ = 2™ for some ) € R.

Consider any ¢ € A with ¢ # 0.

A subset F' of map(P,R) is a face of T'1 (P, ¢), if and only if, there exists w €
map(P,Rg)" such that FF = {a € T+(P,¢)|(w,a) = ord(P,w,¢)}. Any face of
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T4 (P, ¢) is a non-empty closed subset of I'}. (P, ¢), and is a convex pseudo polytope.
For any face F' of T (P, ¢), we put dim F' = dim affi(F) € Zy and we call dim F’
the dimension of F. Any face of 'y (P, ¢) with dimension zero is called a vertex of
T4 (P, ¢). (See Definition [@.2])

By V(I'4+ (P, ¢)) we denote the union of all vertices of I'y (P, ¢). By definition we
have

V(T (P,¢)) = {a € T+(P,¢)| There exists w € map(P,Rg)" such that for any
be T (P,¢) with (w,b) = (w,a), we have b = a}.

We call V(I'y (P, ¢)) the skeleton of T (P, ¢). The set V(I'y (P, $)) is a non-empty
finite subset of supp(P, ¢), and I'y (P, ¢) = conv(V(I'y (P, ¢))) + map(P,Ry). We
denote ¢(T'1 (P, ¢)) = V(T4 (P, ¢)) € Z, and we call ¢(T' (P, ¢)) the characteristic
number of T (P, ¢).

We know that I'; (P, ¢) has only one vertex< ¢(I'y (P, ¢)) = 1 < ¢ has formal
normal crossings over P (Lemma [0.126.), and that these equivalent conditions
always hold, if dim A = 1.

For any ¢ € A with ¢ # 0 and any ¥ € A with ¢ # 0, T (P, ¢v0) =T (P, ¢) +
Ty (P,¢). (Lemma@T28.) For any ¢ € A with ¢ # 0 and any u € A*, T (P, ¢) =
FJr (Pa ud))

Consider any ¢ € A with ¢ # 0 and any z € P.

Note that for any a € V(I'y (P, ¢)), we have (fI'V,a) € Zo. We define

height(z, T (P, ¢))
=max{(f", a)la € V(T4 (P, ¢))} — min{(f", a)la € V(T'+ (P, ¢))} € Zo,

and we call height(z, ' (P, ¢)) the height of Ty (P, ¢) with respect to z, or simply z-
height of T (P, ¢). It is a non-negative integer. By definition, height(z, T4 (P, ¢)) =
0 if and only if the value (ffV,a) does not depend on a € V(I'(P, ¢)). height(z,
[ (P,¢)) =0,if dimA=1.

Let a € V(I (P, $)). We say that {a} is a z-top vertez of T4 (P, ¢), if (fFV,a) =
max{(fFV,b)|b € V(L1 (P, ¢))}. We say that {a} is a z-bottom vertex of T (P, ¢),
it (£PV a) = min{ (Y, 5) b € V(T4 (P, &)}

Let A’ denote the completion of the subring k[P — {z}] of A by the maximal
ideal k[P —{z}]N M (A) = (P —{z})k[P — {z}]. The ring A’ is a complete regular
local subring of A and M(A') = M(A)N A = (P —{z})A’. The set P — {z} is
a parameter system of A’. The completion of the subring A’[z] of A by the prime
ideal zA’[z] coincides with A.

Any element ¢ in A such that ¢ = 2" + Z?:_()l #'(i)z" for some h € Zg and some
mapping ¢’ : {0,1,...,h — 1} = M(A’) is called a z- Weierstrass polynomial over
P, and the integer h is called degree of ¢. For any z-Weierstrass polynomial ¢ over
P, we denote its degree by

deg(P, z, ¢) € Zy.
Note that deg(P,z,¢) =0« ¢ = 1.
We say that T'y (P, ¢) is of z- Weierstrass type, if there exists a € I' (P, ¢) satis-
fying the equality (fFV, a) = ord(P, fFV, ¢) for any z € P — {z}.
The following two conditions are equivalent (Lemma [0.12110.):

(1) The Newton polyhedron I'y (P, ¢) is of z-Weierstrass type.
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(2) There exist uniquely an invertible element © € A*, a mapping a : P—{z} —
Zg, and a z-Weierstrass polynomial ¢ € A over P satisfying

d=u H @)y

reP—{z}

Assume that T'; (P, ¢) is of z-Weierstrass type, we know the following
(Lemma [0.1219.(a)):
(1) Ify € A, we A and ¢ = Yw, then both I'y (P,¢) and I'y (P,w) are of
z-Weierstrass type.
(2) height(z,I'+(P,¢)) = 0 < I'1 (P, ¢) has only one vertex < ¢(I'y(P,¢)) =
1 < ¢ has normal crossings over P.
(3) The Newton polyhedron I' (P, ¢) has a unique z-top vertex.

Below, by {a1} we denote the unique z-top vertex of I'y (P, ¢). Let b = ord(P,
fEV.¢) € Zg and let h = height(z, T4 (P, ¢)) € Zo.
(4) Consider any a € I'y (P, ¢). The equality (fIV, a) = ord(P, fI'V, ¢) holds
for any v € P — {2} < a —a; € Roff.
(5) (fIV,a1) =b+h.
ere exist uniquely an invertible element u € and a mappin :
6) Th ist uniquely an invertible el A% and ing &'
{0,1,...,h — 1} — M(A") satisfying ¢ = u([],cp_y z 9)20 (" +

S0 ¢/ (0)2%), and ¢/(0) # 0 if h > 0

The concept of z-removable faces is important.

Assume that Ty (P, ¢) is of 2-Weierstrass type and any x € P — {z} does not
divide ¢. Under this assumption we can give the definition of z-removable faces.

By assumption there exists uniquely h € Zg such that {hfF} is the unique z-top
vertex of T'; (P, ¢). We take the unique h € Zg satisfying this condition.

Let F be any face of I'y (P,¢). We say that F is z-removable, if hff € F,
F ¢ {hfF} + map(P,Ry) and there exist an invertible element u € A* and an
element x € M(A’) satisfying

ps(P, F, ¢) = u(z +x)".

The face F is z-removable, if and only if, hff € F, F ¢ {hfF} + map(P,Ry)
and after some coordinate change sending z to z itself for any x € P — {z} and
sending z to z + x for some x € M(A’), F becomes a part of {hfl'} + map(P,Ry).
If ¢ € A*, then any face F of 'y (P,¢) is not z-removable, since h = 0 and
F C map(P,Rg) = {hfF} + map(P,Ry). If dim A = 1, then any face F of 'y (P, ¢)
is not z-removable, since F C T' (P, ¢) = {hfF} + map(P,Ry).

We would like to explain the relation betwen the concept of z-removable faces and
Hironaka’s maximal contact here. We assume that the field k has characteristic zero,
and consider any z-Weierstrass polynomial 1) € A over P of positive degree. We take
the unique pair of a positive integer h and a mapping ¢’ : {0,1,...,h—1} — M(A’)
satisfying the equality ¢ = 2" + 317 9/(i)2%. Let 2 = 2z + (¢ (h — 1)/h) € M(A)
and let P = {2} U (P — {z}). We know that ord(y)) < h, P is a parameter system
of A and the Newton polyhedron I‘+(P,w) is of Z-Weierstrass type and has no
Z-removable faces. Now, we assume moreover that ord(¢)) = h. This condition is
equivalent to that ord(¢’(i)) > h—i for any i € {0,1,...,h—1}. Then, the smooth
subscheme Spec(A/2A) of Spec(A) is Hironaka’s maximal contact of the subscheme
Spec(A/pA). (Giraud [10].)
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Note that we cannot define the element 2 = z + (¢/(h — 1)/h) € A, if the
characteristic of the ground field k is positive and the characteristic divides h.

The concept of z-simple is also important.

We say that T'y (P, ¢) is z-simple, if T (P, ¢) is of z-Weierstrass type and any
compact face F' of T'y (P, ¢) satisfies dim F' < 1.

If dim A < 2, then always 'y (P, ¢) is z-simple. If T'y (P, ¢) is z-simple, then
Ty (P, ¢) is of z-Weierstrass type. If Ty (P, ¢) is z-simple, ¥ € A, w € A and
¢ = Yw, then both T'; (P, ) and '} (P,w) are z-simple. (Lemma [0.12114.)

Let R be any regular local ring containing the field k£ as a subring and the residue
field R/M (R) is isomorphic to k as k-algebras.

The completion R is a complete regular local ring containing R as a local subring
and the residue field R°/M(R°) is isomorphic to k as k-algebras. Consider any
parameter system P of R and any ¢ € R with ¢ # 0. We have the Newton
polyhedron 'y (P, ¢) of ¢ over P, if we regard the element ¢ of R as an element of
Re.

Lemma 2.1. Consider any parameter system P of R, any element z € P, and
any w € M(R®) with Ow/dz € R*. We denote P, = {w} U (P — {z}). Let
R’ be the localization of k[P — {z}] by the maximal ideal k[P — {z}] N M(R) =
(P = {z})k[P — {z}].
(1) P is also a parameter system of R°, and for any ¢ € R with ¢ # 0,
c¢(T+(P,¢)) = 1< ¢ has normal crossings over P.
(2) P, is a parameter system of R® with w € P, and P, —{w} = P—{z} C R.
If w € M(R"), then P, is a parameter system of R" with w € P,. If
w € M(R), then P, is a parameter system of R with w € P,,.
(3) There exist uniquely v € R* and x € M(R'®) with w = uz + x. If
w € M(RM), then u € R"™ and x € M(R'™").
(4) There exist uniquely v € R and w € M(R'®) with w = v(z + w). If
w € M(R"M), then v € R" and w € M(R™).
(5) Assume that w € R°*, x € M(R), v € R, w € M(R'°) and w =
uz +x = v(z + w). We take the unique pair vo € R'® and v1 € R® with
v =g + 2U1.
Then, vy € R'*, x = vow, © = v1(2 + w) + v and T (P — {z},x) =
Iy (P—{z},w).
The bijection P, — P sendingw € P, to z € P and sending any x € P,—{w} =
P —{z} tox € P—{z} itself induces an isomorphism map(P,R) — map(P,,R) of
vector spaces over R. By this isomorphism we identify map(P,R) and map(P,,R).
fF € map(P,R) and f» € map(P,,R) are identified. For any v € P — {2},
fF € map(P,R) and fFv € map(P,,R) are identified.

(6) If w € M(R) and w = uw' for some u € R°™, then Ow'/0z € R®* and
Ty (Py, @) =T (Py, @) for any ¢ € R with ¢ # 0.

(7) Consider any w' € M(R®) with Ow'/0z € R°™ and any ¢ € R® with ¢ #
0. T4 (Py, ) is of w-Weiestrass type, if and only if, T (Py, @) is of w'-
Weiestrass type. If these equivalent conditions are satisfied, then the unique
w-top vertex of T4 (Py,d) and the unique w'-top vertex of T (Py, @) are
equal.

(8) For any ¢ € R" with ¢ # 0, there exists 1) € R satisfying (pR") "R = ¢y R
and ¢ # 0.
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(9) Assume moreover, that R is a localization of a finitely generated k-algebra.
Let Q be any subset of P. Let S be the localization of k[Q] by the mazimal
ideal k[Q] N M(R) = QK[Q).

(a) If Q = P, then S¢ = R® and S" = R".

(b) S =S5°nN R".

(¢) Let m : map(P,Zy) — map(Q,Zo) denote the surjective mapping in-
duced by the inclusion mapping Q — P. For any ¢ € R" and any
A € map(Q, Zo), ps(P, 71 (A), $) € R".

(d) For any w € map(P,Ry)" and any ¢ € R", in(P,w, ) € R".
For any w € (map(P,Ro)")° and any ¢ € R®, in(P,w, ¢) € k[P].

Remark . In claim 9.(d), (map(P,Rg)")° denotes the interior of the regular cone

map(P,Ro)". (Definition 55l) (map(P,Ro)¥)° =3, cp Ry fFY C map(P,R)*.

Proof. Claim 4 follows from Henselian Weierstrass Theorem in Hironaka [I7]. O

Consider any parameter system P of R, any element z € P, any w € M(R®)
with w/0z € R°*, and any ¢ € R with ¢ # 0. We denote P, = {w} U (P — {z}).

Since R is a UFD, we have an invertible element © € R*, a finite set € of
irreducible elements of R and a mapping a : Q — Z, satisfying ¢ = u ][], cq W),
We take any u, ) and a satisfying these conditions. Let

E={we Now/ow e M(R), and any x € P, — {w} does not divide w}.

We say that an element ¢ € R is a main factor of the triplet (P, w, ¢), or a
w-main factor over P, of ¢, if ¥ = v]] .= w™«) for some v € R*. Since R is a
UFD, the condition that ¢ € R is a main factor of (P, w, ¢) does not depend of
the choice of u, ) and a we used for the definition.

If ¢ € R is a main factor of (P, w, ¢) and ¥’ € R is a main factor of (P, w, ¢),
then by definition, ¢ = vy’ for some v € R*, T\ (P,¢) = T'1(P,¢’), and any
x € P, — {w} does not divide .

We consider the case where ' (P, ¢) is of w-Weierstrass type. Let ¥ € R be
any main factor of (P,,w, ¢). The Newton polyhedron I (P,,, %) does not depend
on the choice of the main factor ¥ and it is of w-Weierstrass type. Furthermore,
there exists uniquely a non-negative integer h such that {hfL«} is the unique w-top
vertex of ' (P, 1). We take h € Zg satisfying this condition and we define

inv(Py,w,$) = h € Zy.

The non-negative integer inv(P,,, w, ¢) is our main invariant measuring the bad-
ness of the singularity ¢.

Lemma 2.2. Consider any parameter system P of R, any element z € P, any
w € M(R®) with Ow/dz € R, and any ¢ € R with ¢ # 0. We denote P, =
{w} U (P~ {2}).
The bijection P, — P sendingw € P, to z € P and sending any x € P,—{w} =
P —{z} tox € P—{z} itself induces an isomorphism map(P,R) — map(P,,R) of
vector spaces over R. By this isomorphism we identify map(P,R) and map(P,,R).
(1) For anyy € R, v is a main factor of (Py,w, @), if and only if, the following
three conditions are satisfied:
(@) ¢ = u([lep,—fu) 9@ ([Toeqw?@)Y and dw/0w € R for any
w € Q, for some u € R*, some mapping a : P, — {w} — Zy, some
finite subset Q of M(R) and some mapping b: Q — Z .
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(b) Any element of P, — {w} does not divide 1.
(¢) Any w € M(R) with dw/0w € R°* does not divide 1.
(2) If both i € R and ¢' € R are main factors of (Py,w, @), then ¢ = w)’ for
some u € R* and T (P,¢) =T (P,y’).
(3) For any ¥ € R and any w' € M(R®) with Ow'/0z € R°™, ¢ is a main
factor of (Py,,w, d) < 1 is a main factor of (P, w', d).
(4) Lettp € R be any main factor of (Py,w, ). ¥ & xRC for any x € P, —{w}.
If we M(R), then ¢ € wRC. ©) & zRC.
(5) The following three conditions are equivalent:
(a) Any main factor of (Py,w, @) is an invertible element of R.
(b) Some main factor of (Py,w,®) is an invertible element of R.
() ¢ =ullep,—fu} 9@ ([, cqw’™) and Ow/0w € R for any w €
Q, for some u € R*, some mapping a : P, — {w} — Zg, some finite
subset Q of M(R) and some mapping b: Q — Z.
If T (Py, @) is of w-Weierstrass type, then the condition below is also
equivalent to the above three conditions.
(d) inv(Py,w,¢) =0.
Below, we assume that I'L (P, ¢) is of w-Weierstrass type.
(6) inv(Py,w,¢) # 1.
(7) Let ¢ € R be any main factor of (Py,w, ).
(a) Ty (Py,) is of w- Weierstrass type and {inv(Py,, w, ) fL=} is the unique
w-top verter of Ty (Py, ).
(b) Let w' € M(R°) be any element with Ow'/0z € R*. inv(Py,,w, ¢) =
inv(Pyr,w', ¢).
(c) There exist uniquely u € R°* and ¢y’ € R° such that ¥’ is a w-
Weierstrass polynomial over P, and v = ui)’.
We take u € R°* and ¢’ € R® satisfying the above conditions.
(d) T (Pu, ) =T (Po,?').
(e) inv(P,,w,¢) = height(w, T4 (Py, 1)) +ord(Py, ff«V, 1) = deg(P,, w,
#) > ord() = ord ().
If w € M(R), then ord(P, fl»V 4) = 0 and inv(P,, w, $) = height(w,
l—‘-i- (Pwv ¢))
(8) Assume both ) € R and )’ € R are main factors of (Py,w, ). We takeu €
R and ¢" € R® such that ¢" is a w-Weierstrass polynomial over P, and
Y =w”. Consider any face F of T4 (Py,¥) = T4 (Py, ') = T4 (Pw, ).
F is a w-removable face of T (Py,v), if and only if, F is a w-removable
face of T (Py,v") , if and only if, F is a w-removable face of T4 (Py,v¥").
(9) Assume inv(Py,,w,$) = 0.
There exist uw € R*, a mapping a : P, — {w} = Zy, a finite subset  of
M(R) and a mapping b : Q — Z satisfying the following three conditions:
(a) p=u HmGow{w} zo(®) Hweﬂ w
(b) Ow/Ow € R for any w € .
(¢) Ifw=ww' for somew € Q, somew’ € Q and somev € R*, thenv =1
and w = w'.

Let w' € M(R®) be any element with Ow'/0z € R°*. There exist v’ €
R*, a mapping o’ : P — {2} — Zo, a finite subset Q' of R and a mapping
b Q — Zy satisfying the following three conditions:

(a) =1’ HzGPwlf{w’} () [Locor W @),
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(b) dw/Ow' € R®* for any w € V.
(¢) If w=ww" for some w € ¥, some w' € Q' and some v € R*, then
v=1and w=uw'.
Ifu,a,Q,b,u',a’,Q and V' satisfy the above conditions, then §Q = #).

For any w € M(R°) with dw/0z € R°* and any ¢ € R such that ¢ # 0,
Iy (Py, @) is of w-Weierstrass type, and inv(P,, w, ¢) = 0 where P, = {w} U (P —
{z}), we take u, a,Q, b satisfying the conditions in the above Lemma 2219 and we
define

inv2(Py,w, ¢) = iQ € Zy.

Lemma 2.3. Consider any parameter system P of R, any element z € P, any
w € M(R®) with Ow/dz € R°*. We denote P, = {w} U (P — {z}).
Consider any element ¢ € R such that ¢ # 0, T'1(Py,®) is of w-Weierstrass
type, and inv(P,,w, ) = 0.
(1) If inv2(Py, w, ¢) < 1, then ¢ has normal crossings.
(2) If inv2(Py,w, ) > 1, then there exists 2 € M(R) such that 0z/0z € R*
and z divides ¢.
(3) Let w' € M(RF) be any element with dw'/dz € R*. inv(Py,,w',¢) =0
and inv2( Py, w', @) = inv2(Py, w, ¢).

3. BASIC SCHEME THEORY

We develop the basic scheme theory.

Let X be any scheme, and let Z be any ideal sheaf in the structure sheaf Ox of
X, in other words, any sheaf of Ox-modules which is a subsheaf of Ox. The ideal
sheaf 7 is called locally principal, if for any a € X there exists ¢ € Ox 4 such that
¢ is not a zero-divisor of Ox , and Z, = ¢Ox ,, where Z, denotes the stalk of Z at
a. Note that for any scheme Y and for any morphism v : Y — X of schemes, the
pull-back v*Z of Z as an ideal sheaf is defined, and v*Z is a sheaf of Oy-modules
which is a subsheaf of Oy-.

Grothendieck has shown that there exists a scheme X’ and a morphism o : X' —
X satisfying the following universal mapping property:

(1) The ideal sheaf 0*Z is locally principal.

(2) I Y is a scheme, v : Y — X is a morphism, and the ideal sheaf v*Z is
locally principal, then there exists uniquely a morphism 7 : Y — X' with
oT =1.

By the universal mapping property we know that the pair (X', o) satisfying the
above conditions is unique up to isomorphism of schemes over X. The pair (X', o)
satisfying the above conditions is called the blowing-up with center in an ideal sheaf
Z, or the blowing-up with center in Z, where Z denotes the closed subscheme of X
defined by the ideal sheaf Z. Note that any closed subscheme of X has a unique
ideal sheaf in Ox defining it. If 7 is locally principal, then ¢ is an isomorphism.
When a closed subset Z of X is given, we take the unique ideal sheaf 7 in Ox
defining the reduced scheme structure on Z and we call the blowing-up with center
in Z the blowing-up with center in Z.

Let (X’,0) be the blowing-up with center in Z. By Z we denote the closed
subscheme of X defined by the ideal sheaf Z. We call the inverse image o~ *(Z)
the exceptional divisor of o. For any closed irreducible subset W of X with W ¢
Zyred, the closure in X’ of o~Y(W — Z) is called the strict transform of W by o.
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If X is separated, noetherian, irreducible and smooth, and Z is irreducible and
smooth, then X' is also separated, noetherian, irreducible and smooth, and o~*(Z)
is irreducible and smooth.

For any ring R and an ideal I of R, we regard the affine scheme Spec(R/I) as
the closed subcheme of the affine scheme Spec(R) by using the closed embedding
Spec(R/I) — Spec(R) induced by the canonical surjective ring homomorphism
R — R/I to the residue ring.

Let X be any separated noethrian irreducible smooth scheme with dim X > 1,
let D be any effective divisor of X, and let a € X be any point. We consider the
natural morphism ¢ : Spec(Ox,,) — X. It is dominant, and the pull-back §*D of
D by this morphism § is defined. We say that D has normal crossings at a € X, if
there exist a parameter system P of the local ring Ox , of X at a, and an element
A € map(P,Zy) such that

0*D = Spec(Ox.q/ H @ Ox ).
zeP

We say that D has normal crossings or D is a mormal crossing divisor, if it has
normal crossings at any point of X. It follows from definition that any component
of D is smooth and the intersection of any finite number of components of D is
smooth (however, the intersection of two or more components of D may be empty
or reducible), if D has normal crossings.

Here we give the definition of the concept of normal crossing schemes over an
algebraically closed field and introduce some notations associated with it. Let k
denote any algebraically closed field below in this section.

A pair

(X, D),
satisfying the following five conditions is called a normal crossing scheme over k.

(1) The first item X is a separated noetherian irreducible smooth scheme over
k with dim X > 1 such that any closed point a € X is a k-valued point.
(2) The second item D is a non-zero effective normal crossing divisor of X.

We use the following notations: The set of components of D is denoted by
comp(D). For any point a € X we denote
comp(D)(a) = {C € comp(D)|a € C},
and
(D)o = {a € X|tcomp(D)(a) = dim X }.
For any a € (D)o we write
U(X,D,a) =X — ( U 0).
Cecomp(D)—comp(D)(a)
We write simply U(a), instead of U(X, D, a), when we need not refer to the pair
(X, D).
(3) For any subset @ of comp(D), (Nceq C is irreducible.
(4) For any subset Q of comp(D) with (oo C # 0, there exists a € (D)o such

that @ C comp(D)(a).
(5) For any a € (D)o, U(a) is an affine open subset of X.
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Let (X, D) be a normal crossing scheme over k. For any a € (D)o, we consider
a mapping
¢4+ comp(D)(a) = Ox (U(a)).

Consider any point a € (D)o. If £, satisfies the following two conditions, then we
call &, a coordinate system of (X, D) at a:

(1) For any C € comp(D)(a) we have
CNU(a) = Spec(Ox (U(a))/§a(C)Ox (U(a))).

(2) For any k-valued point b in U(a), the set {£,(C)—£,(C)(b)|C € comp(D)(a)}
is a parameter system of the local ring Ox ; of X at b. Here £,(C)(b) € k
denotes the value of £,(C) € Ox(U(a)) at b.

If £, is a coordinate system of (X, D) at a for any a € (D)o, then we call the
collection £ = {&,|a € (D)o} a coordinate system of (X, D). For a coordinate
system & of (X, D) we denote the element of £ corresponding to a € (D)o by &,.

A triplet (X, D, &) such that the pair (X, D) is a normal crossing scheme over
k and ¢ is a coordinate system of (X, D) is called a coordinated normal crossing
scheme over k.

Example 3.1. Let R be any regular local ring such that R contains k as a subring,
the residue field R/M(R) is isomorphic to k as k-algebras, and dim R > 1; let P
be any parameter system of R; and let A € map(P,Z.).

Note that M (R) € Spec(R) and M (R) is the unique closed point of Spec(R). Let
D = Spec(R/[I,cp 2@ R). The pair (Spec(R), D) is a normal crossing scheme
over k. We have (D)o = {M(R)}, comp(D) = comp(D)(M(R)) = {Spec(R/zR)|x €
P}, and U(Spec(R), D, M(R)) = Spec(R). For any x € P, we put y;(g)(Spec(R/zR
)) = 2. We obtain a mapping gy : comp(D)(M(R)) = Ospec(r) (U(Spec(R), D,
M(R))). The mapping {pz(r) is a coordinate system of (Spec(R), D) at M(R), and
the triplet (Spec(R), D, {&n(r)}) is a coordinated normal crossing scheme over k.

We consider the subring k[P] of R. We denote M = k[P]|NM(R) = Pk[P]. M €
Spec(k[P]) and M is a closed point of Spec(k[P]). Let D = Spec(k[P]/[[,cp 2™

k[P]). The pair (Spec(k[P]), D) is a normal crossing scheme over k. We have (D)y =
{M}, comp(D) = comp(D)(M) = {Spec(k[P]/xk[P])|z € P}, and U(Spec(k[P]),
D, M) = Spec(k[P]). For any z € P, we put &;(Spec(k[P]/zk[P])) = z. We obtain
a mapping &y; : comp(D)(M) = Ogpec(ip)) (U (Spec(k[P]), D, M)). The mapping
&7 is a coordinate system of (Spec(k[P]), D) at M, and the triplet (Spec(k[P]), D,
{&ir}) is a coordinated normal crossing scheme over k.

The four lemmas below easily follow from definitions.

Lemma 3.2. Let (X, D) be a normal crossing scheme over k.

(1) The set comp(D) is non-empty and finite.

(2) Consider any non-empty subset Q of comp(D) with Noeq C # 0. Neeg C
is a closed irreducible smooth subset of X, and dim ﬂCeQ C =dim X — Q.
If we give the reduced scheme structure to any C € Q, then the intersection
scheme ﬂCeQ C' is reduced and smooth.

(3) The set (D)o is a non-empty finite set of k-valued points of X .

(4) For any a € (D)o and any b € (D)o, comp(D)(a) = comp(D)(b), if and
only if, a =b.
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(5)
xX= J U

a€(D)o
Let Q be any subset of comp(D) with §Q > 2 and (\oegC # 0. We denote
Z = mCeQ C, and the blowing-up with centerin Z by o : X' — X. Furthermore, by
E’ we denote the exceptional divisor of o, and by C' we denote the strict transform
of C € comp(D) by o for any C € comp(D).
(6) The pair (X',0*D) is a normal crossing scheme over k.
(7) E' € comp(c*D). comp(c*D)—{E'} = {C’|C € comp(D)}. fcomp(c*D) =
fcomp(D) + 1.
(8) For any C € comp(D) — Q, we have c*C = C’'. For any C € Q, we have
c*C=C"+F.
(9) o((e"D)o) = (D)o.
(10) For any a € (D)o with a ¢ Z, we have fo~1(a) N (¢* D)o = 1, and the
unique element a' in o~ *(a) N (0* D)o satisfies {a'} = Neeccomp(py(a) €'
comp(c*D)(a’) = {C’|C € comp(D)(a)}, andU(X',0*D,d') = o~ (U(X, D,

a)).

If moreover, a mapping &, : comp(D)(a) — Ox(U(X, D, a)) is a coor-
dinate system of (X, D) at a, then there exists a unique coordinate system

!, comp(o*D)(a') = Ox/(U(X',0*D,a’)) of (X',0*D) at o’ satisfying
0¥ (&,(C)) = &..(C") for any C € comp(D)(a), whereo* : Ox (U(X, D, a)) —
Ox/(U(X',6*D,a’)) denotes the ring homomorphism induced by o.

(11) For any a € (D)o with a € Z, we have fo=1(a) N (6* D)y = 1Q > 2,
and there exists a unique one-to-one mapping a’ : Q — o~ (a) N (6* D)o
such that for any B € Q we have {d'(B)} = E" 0 Ncecomp(p)(a)— {5} €'
comp(c*D)(a'(B)) = {E'} U{C'|C € comp(D)(a) — {B}}, and
U(X',0*D.d'(B)) = o' (U(X,D,a)) — B'.

If moreover, a mapping &, : comp(D)(a) — Ox(U(X, D, a)) is a coor-
dinate system of (X, D) at a, then for any B € Q, there exists a unique
coordinate system &, gy : comp(c*D)(a’(B)) — Ox/(U(X',0"D,d'(B)))
of (X',0*D) at o’ (B) satisfying

§ormy (E) if C = B,
0" (6a(C)) = { €1 (C)eb iy (B) i C € Q—{B},
f;/(B)(C/) if C € comp(D)(a) - Q,

for any C' € comp(D)(a), where c* : Ox(U(X, D, a)) —
Ox/(U(X',0*D,d’'(B))) denotes the ring homomorphism induced by o.

Let (X, D) be a normal crossing scheme over k.

We call a non-empty closed subscheme Z of X such that there exists a non-
empty subset @ of comp(D) satisfying Z = ﬂCEQ C a closed stratum of D. We call
a blowing-up whose center is a closed stratum of D an admissible blowing-up over
D.

Let @ be any subset of comp(D) with §Q > 2 and (oo C #0. Let 0 : X' — X
denote the admissible blowing-up with center in ﬂCGQ C. We call the normal
crossing scheme (X', 0*D) over k the pull-back of (X, D) by 0. Let @’ € (6*D)g be
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any point, and let £,y : comp(D)(c(a’)) = Ox(U(X, D,o(a’))) be a coordinate
system of (X, D) at o(a’). We have the coordinate system ¢/, : comp(D)(a’) —
Ox/(U(X',0*D,a’)) of (X',0*D) at a’ described in Lemma[3.2110 or Lemma[3.2111.
The coordinate system ¢, is called the pull-back of {41y at a’ by 0. Let § = {£a|a €
(D)o} be a coordinate system of (X, D). We denote

0§ = {{uld’ € (o7 D)o},

and call 0*¢ the pull-back of £ by o. Note that triplets (X, D, &) and (X', 0*D, c*¢)
are coordinated normal crossing scheme over k. We call the coordinated normal
crossing scheme (X', 0* D, 0*§) over k the pull-back of (X, D,¢) by o.

Let X’ be a scheme, and let o : X’ — X be a morphism. We call o an admissible
composition of blowing-ups over D, if there exist a non-negative integer m, (m+1) of
normal crossing schemes (X (), D(4)) over k, ¢ € {0,1,...,m}, and m of morphisms
o(i): X(#) = X(i—1),i €{1,2,...,m} satisfying the following two conditions:

(1) X(0)=X,D(0)=D,X(m)=X"and 0 =c(1)o(2)--- o(m).
(2) For any i € {1,2,...m}, o(i) is an admissible blowing-up over D(i — 1)
and D(i) = o(i)*D(i — 1).
If moreover, the center of o(i) has codimension two for any i € {1,2,... m}, then
we call o an admissible composition of blowing-ups with center of codimension two
over D.

Lemma 3.3. 1. Let (X, D) be a normal crossing scheme over k, let X’ be a scheme,
and let o : X' — X be an admissible composition of blowing-ups over D. Then, the
pair (X',0* D) is a normal crossing scheme over k.

2. Let (X,D,&) be a coordinated normal crossing scheme over k, let X' be a
scheme, and let 0 : X' — X be an admissible composition of blowing-ups over
D. Assume that m € Zo, (m + 1) of normal crossing schemes (X (i), D(7)) over k,
i€ {0,1,...,m}, and m of morphisms o(i) : X(i) - X(i —1),i € {1,2,...,m}
satisfy the above two conditions. We write 0*¢ = o(m)*oc(m—1)*---o(1)*¢. Then,
the triplet (X', 0*D,c*€) is a coordinated normal crossing scheme over k, and the
coordinate system o*¢ of (X',0*D) does not depend on the choice of m € Zy,
(m + 1) of normal crossing schemes (X (i), D(i)) over k, i € {0,1,...,m}, and m
of morphisms o (i) : X (i) — X (i—1),i € {1,2,...,m} satisfying the two conditions.

Let (X, D) be a normal crossing scheme over k, let X’ be a scheme, and let
o : X' - X be an admissible composition of blowing-ups over D. We call the
normal crossing scheme (X', 0*D) over k the pull-back of (X, D) by o.

Let (X, D, &) be a coordinated normal crossing scheme over k, let X’ be a scheme,
and let o : X’ — X be an admissible composition of blowing-ups over D. Choosing
m € Zy, (m + 1) of normal crossing schemes (X (i), D()) over k, ¢ € {0,1,...,m},
and m of morphisms (i) : X (i) - X (1 —1),7 € {1,2,...,m} satisfying the above
two conditions, we define the coordinate system o*¢ of (X', 0* D) by putting 0*¢ =
o(m)*a(m — 1)*---o(1)*¢. The coordinate system o*¢ does not depend on the
choice of m € Zg, (m+1) of normal crossing schemes (X (i), D(i)),7 € {0,1,...,m},
and m of morphisms o(i) : X (i) — X (i —1),7 € {1,2,...,m} satisfying the above
two conditions. We call ¢*¢ the pull-back of € by o. For any a’ € (6*D)g, we
call (0%§)q the pull-back of £,(,y by 0. We call the coordinated normal crossing
scheme (X', 0* D, 0*¢) over k the pull-back of (X, D,€) by o.
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Lemma 3.4. Consider any scheme X over k and any divisors D and D' of X such
that both (X, D) and (X, D") are normal crossing schemes over k and supp(D) =
supp(D’).
(1) comp(D) = comp(D’), comp(D)(a) = comp(D’)(a) for anya € X, (D)o =
(D)o, and U(X,D',a) =U(X, D,a) for any a € (D).
(2) If ¢ = {&ula € (D)o} is a coordinate system of (X, D), then & is a coordinate
system of (X, D").

Lemma 3.5. Recall that k denotes any algebraically closed field. Let R be any
regular local ring such that R contains k as a subring, the residue field R/M(R) is
isomorphic to k as algebras over k, and dim R > 2, let P be any parameter system
of R, and let z € P be any element.

Let R’ denote the localization of k[P — {z}] by the mazimal ideal k[P — {z}] N
M(A) = (P —{z})k[P — {z}]. The ring R’ is a regular local subring of R. The set
P — {z} is a parameter system of R’.

Let o' : X' — Spec(R’) be any composition of finite blowing-ups with center in
a closed irreducible smooth subscheme. The scheme X' is smooth. We consider a
morphism Spec(R) — Spec(R’) induced by the inclusion ring homomorphism R’ —
R, the product scheme X = X' Xgpec(r) SPec(R), the projection o : X — Spec(R),
and the projection w: X — X'. We know the following:

(1) The morphism o is a composition of finite blowing-ups with center in a
closed irreducible smooth subscheme. The scheme X is smooth.
(2) The pull-back o*Spec(R/zR) of the prime divisor Spec(R/zR) on Spec(R)
by o is a smooth prime divisor on X, and o*Spec(R/zR) D oY (M(R)).
(3) The projection 7 : X — X' induces an isomorphism o*Spec(R/zR) — X'.
(4) For any closed point a € X, any w € M(R") with Ow/0z € R"* and any
parameter system Q" of the local ring Ox: () of X" at w(a), o(a) = M(R)
and {o*(w)} Un*(Q’") is a parameter system of the Henselization (9?(7(1 of
the local ring Ox o of X at a with 7*(Q") C Ox.., where o* : R" —
O?(,a denotes the homomorphism of local k-algebras induced by o on the
Henselizations of local rings and 7 : Ox: ra) = Ox,a C O])I()a denotes the
homomorphism of local k-algebras induced by .
If w € M(R), then {o*(w)} Un*(Q') is a parameter system of the local
ring Ox,q of X at a
(5) For any closed point a' € X', o’(a') = M(R') and the fiber 7=1(a’) of w
over a’ is isomorphic to Spec(R/(P — {z})R) as k-schemes.
(6) For any affine open subset U’ of X', the inverse image 7= 2(U’) of U’ by 7
is an affine open subset of X.
Let D = Spec(R/ [[,cpaR), and let D" = Spec(R'/ [[,cp_(.y o1').

(7) If o' is an admissible composition of blowing-ups over D', then o is an
admissible composition of blowing-ups over D.

(8) If o’ is an admissible composition of blowing-ups with center of codimension
two over D', then o is an admissible composition of blowing-ups with center
of codimension two over D.

4. MAIN RESULTS

We state our main results. Their proofs will be given in Section[I9and Section[20
We fix notations we use throughout this section.
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Let k be any algebraically closed field, let R be any regular local ring such that R
contains k as a subring, the residue field R/M (R) is isomorphic to k as k-algebras,
R is a localization of a finitely generated k-algebra and dim R > 1, let P be any
parameter system of R, and let z € P be any element.

By R’ we denote the localization of k[P —{z}] by the maximal ideal k[P — {z}]N
M(R) = (P — {z})k[P — {=}].

Furthermore, we denote

PW ={¢ € R|¢p # 0,T (P, ) is of z-Weierstrass type.},

RW = {¢ € PW|I'£(P,v) has no z-removable faces, where 1 denotes a
main factor of (P, z, ¢).},

SW = {¢ € RW|I'L(P, ¢) is z-simple.}.

Note that R D PW D RW D SW £ (), if ¢ € R, ¢ # 0 and ' (P, ¢) is z-simple
then I'; (P, ¢) is of z-Weierstrass type, and R = {0} U PW if dim R < 2.

For the proof of our main theorem below, we apply the theory of convex sets
and the toric theory. By our main theorem any element in SW is reduced to an
element in PW with a strictly smaller value of inv or inv2.

Theorem 4.1. Assume dim R > 2. Consider any ¢ € R such that ¢ # 0, T (P, ¢)
is z-simple, and ¢ satisfies one of the following two conditions:

(1) inv(P,z,¢) > 0, T4 (P,¢) has no z-removable faces, where v denotes a
main factor of (P, z, ).
(2) inv(P, z,¢) =0, inv2(P, z,$) > 2 and z divides ¢.

Let D = Spec(R/ [[,cp xR), which is a normal crossing divisor on Spec(R). We
define a coordinate system &ypry : comp(D) — R of the normal crossing scheme
(Spec(R), D) at M(R) by putting {ary(Spec(R/xR)) = x for any x € P. The
triplet (Spec(R), D, {{am(r)}) is a coordinated normal crossing scheme over k.

There exist a smooth scheme X over Spec(R) and an admissible composition of
blowing-ups o : X — Spec(R) with centers of codimension two over D such that
for any closed point a € X with o(a) = M(R), there exist a closed point b € X
and a component C passing through b of the pull-back o*D of the divisor D by o
satisfying the following five conditions:

(1) The number of components of the normal crossing divisor c*D on X passing
through b is equal to dim R = dim X.

(2) The point a belongs to the complement U(X,0*D,b) in X of the union of
all components of o* D not passing through b.

We consider the pull-back (0*&), at b of the coordinate system &nry at M(R)
by 0. (%€ is a coordinate system associated with the normal crossing divi-
sor c*DNU(X,0"D,b) on an affine open set U(X,0*D,b). comp(c*D)(b) de-
notes the set of all components of o*D passing through b. Note that for any
C € comp(a*D)(b), (6*£)(C) is a regular function over U(X,c*D,b) and its value
(0*)u(C)(a) € k at a is defined. The local ring Ox o of X at a is a regular local
ring containing k as a subring, the residue field Ox o/M(Ox 4) is isomorphic to k
as k-algebras and Ox , is a localization of a finitely generated k-algebra. We denote
P = {(0%)p(C) — (6%€)p(C)(a)|C € comp(c*D)(b)}, which is a parameter system
of Ox.a, and we denote z = (0*€),(C) — (6%€)p(C)(a) € P. We consider the local
k-algebra homomorphism o* : R = Ox o induced by o.
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(3) 0*(¢) # 0 and the Newton polyhedron T (P,a*(¢)) is of z-Weierstrass
type. ~
(4) Ifinv(P, z,¢) > 0, then inv(P, 2z

P,z,0%(¢)) <inv(P,z,6).
(5) Ifinv(P, z,¢) =0, theninv(P, z,

o
o*(¢)) = 0 andinv2(P, z,0*(¢)) < inv2(P,

2,9).

Remark . The smooth scheme X and the admissible composition of blowing-ups
o : X — Spec(R) in the above theorem are concretely constructed from the Newton
polyhedron T'y (P, ¢) using the toric theory.

Now, since I'; (P, ¢) is z-simple by our assumption, the normal fan ¥ of ' (P, ¢)
has simple structure, and the support |X| of ¥ is a regular cone with dimension equal
to dim R. Starting from the fan F(|X|) consisting of |X| and its faces and repeating
star subdivisions with center in a regular cone of dimension two, we construct most
effectively a regular subdivision ¥* of 3 satisfying |X*| = |X|, which we call an
upward subdivision of ¥. We explain how to construct ¥* in Section [I7

Our scheme X and our morphism ¢ are the toric variety over Spec(R) and the
toric morphism associated with an upward subdivision ¥* of the normal fan X of

F+ (Pu ¢) :
In the theorem below we study properties of z-removable faces closely.

Theorem 4.2. Assume dim R > 2.

Consider any element w € M (R®) with Ow/0z € R°*. We denote P, = {w} U
(P —{z}). (Lemmal21l)

The bijection P, — P sendingw € P, to z € P and sending any x € P,—{w} =
P —{z} tox € P—{z} itself induces an isomorphism map(P,R) — map(P,,R) of
vector spaces over R. By this isomorphism we identify map(P,R) and map(P,,R).

Consider any element 1 € R such that ¢ # 0, T (P,v) is of z- Weierstrass type
and any x € P —{z} does not divide 1p. We take the unique non-negative integer h
such that {hfL'} is the unique z-top vertex of I' 1 (P,)).

Recall that T4 (P,) C map(P,R) and {fI'|x € P} is an R-basis of the vec-
tor space map(P,R). Let U = {a € map(P,R)|(fFV,a) < h} and V = {a €
map(P,R)|(f7¥, a) = 0}. We put p(a) = (a — (f7¥, a)fP)/(h — (fF¥,a)) € V' for
any a € U and we define a mapping p: U — V.

Note that V is an R-vector subspace of map(P,R) with dimV = dimmap(P,
R) — 1 and the set {fF'|x € P — {z}} is an R-basis of V. Using the isomorphism
map(P — {z},R) — V of vector spaces over R sending Pt e map(P — {z},R)
to fF eV for any x € P — {2} we identify map(P — {z},R) and V.

We identify the dual vector space V* of V with the vector subspace {@ € map(P,
R)*|(@, fF) = 0} in the dual vector space map(P,R)* of map(P,R). Under this
identification (map(P,Ry) NV)V|V = (map(P,Rg)"|map(P,R)) N V*.

(1) p(T4(Py,)NU) is either an empty set or a rational pseudo polytope over
the lattice map(P,Z) NV in V such that p(T4(Py,v) NU) = conv(Y) +
(map(P,Rg) N'V) for some non-empty finite subset Y of map(P,Q)NV.

(2) There exists uniquely an element xo € M(R'®) such that T'y (Psyy,, %) has
no (z + xo)-removable faces and supp(P — {z},x0) C p(T+(P,¢p) NU) —
p(FJr (PerXov 1/’) N U)
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Below, we assume that xo € M(R'®), T {(P.qy,, %) has no (z + xo)-removable
faces and supp(P — {z},x0) C p(T+(P, %) NU) — p(T4(Pegyo,¥) NU) and that
v e R, ue M(R) and w =v(z + p).

3) p(T4(Puw,¥) NU) = conv(p(P(Pryxo,¥) NU) UT (P — {2}, 1 = Xo0))-
For any face F of Ty (Py,) with hff € F and FNU # 0, F is w-
removable, if and only if, p(F NU) N p(T(Psiyyo.¥) NU) = 0.
(4) The following three conditions are equivalent:
(@) p(T'+(Pu, ) NU) = p(T4 (Peyy, ) NU).
(b) supp(P - {Z}7 B XO) C p(r+(Pz+X07¢) n U)
(¢) T4 (Py,) has no w-removable faces.
(5) P(T(Pogxo, ) NU) = 0, if and only if, 1 = u\" for some u € R* and
some X € M(R).
(6) xo € M(R™).
(7) Assume moreover, that either p(I'+(Py4yo, %) NU) has at most one vertex,
or dim R < 3. Then, there exists wi € M(R) such that Ow1/0z € R*, and
T4 (Py, %) has no wyi-removable faces.

We would like to solve the following problem:

Problem 4.3. Show that for any ¢ € R with ¢ # 0, there exists a composition
o : X — Spec(R) of finite blowing-ups with center in a closed irreducible smooth
subscheme such that the divisor on X defined by the pull-back o*(¢) € Ox(X) of
¢ by o has normal crossings.

Note here that dim R’ = dim R — 1 < dim R.

We consider the case dim R = 1.

Consider any ¢ € R with ¢ # 0. ¢ has normal crossings over P.

Put X = Spec(R) and we consider the identity morphism o : X — Spec(R) = X.
We know that ¢ is a composition of blowing-ups with center in a closed irreducible
smooth subscheme, and the divisor defined by ¢*(¢) = ¢ on X = Spec(R) has
normal crossings. We can easily solve the Problem 3] if dim R = 1.

Therefore, we decide that we use induction on dim R, and we can assume the
following claim (%) whenever dim R > 2.:

() For any ¢’ € R’ with ¢’ # 0, there exists a composition ¢’ : X’ — Spec(R’)
of finite blowing-ups with center in a closed irreducible smooth subscheme
such that the divisor on X’ defined by the pull-back ¢"*(¢') € Ox/(X') of
¢’ by ¢’ has normal crossings.

Claim (%) is true, if dim R < 2.

Let o’ : X" — Spec(R’) be any composition of blowing-ups with center in a closed
irreducible smooth subscheme. The scheme X’ is smooth. We consider a morphism
Spec(R) — Spec(R’) induced by the inclusion ring homomorphism R’ — R, the
product scheme X = X' Xg,ec(r/) Spec(R), the projection o : X — Spec(R), and
the projection 7 : X — X’. We know the following (Lemma [B5]):

(1) The morphism o is a composition of finite blowing-ups with center in a
closed irreducible smooth subscheme. The scheme X is smooth.

(2) We consider the prime divisor Spec(R/zR) on Spec(R) defined by z € R.
The pull-back 0*Spec(R/zR) of Spec(R/zR) by o is a smooth prime divisor
of X, and o*Spec(R/zR) D o 1(M(R)).

(3) The projection m : X — X' induces an isomorphism o*Spec(R/zR) — X'.
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(4) For any closed point a € X, any w € M(R") with dw/dz € R"* and any
parameter system Q" of the local ring Ox r(q) of X’ at 7(a), o(a) = M(R)
and {o*(w)} Un*(Q') is a parameter system of the Henselization O’}()a of
the local ring Ox, of X at a with 7*(Q') C Ox.4, where o* : R" —
O;}ﬁa denotes the homomorphism of local k-algebras induced by o on the
Henselizations of local rings and 7* : Ox r(s) = Ox,a C O’}()a denotes the
homomorphism of local k-algebras induced by .

The theorem below plays three roles. First, any element in PW with a positive
value of inv is reduced either to an element in RW with the same value of inv or to
an element in PW with a strictly smaller value of inv. Second, any element in RW
with a positive value of inv is reduced either to an element in SW with the same
value of inv, or to an element in PW with a strictly smaller value of inv. Third,
any element in PW with the value zero of inv is reduced to an element in SW with
the value zero of inv and with the same value of inv2.

Theorem 4.4. Assume the above (x) and dim R > 2.

Consider any element ¢ € R and any w € M(R") such that ¢ # 0, dw/dz €
RM*, and T4 (P, @) is of w-Weierstrass type, where P, = {w}U (P —{z}). By ¢
we denote a main factor of (Py,w, ®).

There exists a composition o’ : X' — Spec(R') of finite blowing-ups with center
in a closed irreducible smooth subscheme with the following properties:

We consider the product scheme X = X' Xgpec(rr) Spec(R), the projection o :
X — Spec(R) and the projection 7 : X — X'. X and X' are smooth. Note
that for any closed point a € X with o(a) = M(R), we have the homomorphism
o : R = Ox,q of local k-algebras induced by o from R to the local ring Ox q
of X at a, the homomorphism 7 : Ox/ ra) — Ox.,a of local k-algebras induced
by 7 from the local ring Ox/ 1) of X' at w(a) to Ox, . and the homomorphism
0™ : R' — Ox x(a) of local k-algebras induced by o' from R' to Ox: r(qy, and o*
induces a homomorphism o* : R — O})a of local k-algebras from the Henselization
R" of R to the Henselization O?(,a of Ox q.

For any closed point a € X with o(a) = M(R), o*(¢) # 0, and there exists a
parameter system Q of Ox'.r(a) satisfying the following siz conditions. We denote
P, = {o*(w)} Un*(Q) and by v we denote a main factor of (P, c*(w),c*(4)):

(1) o’*(z) has normal closings over Q for any x € P, — {w} = P — {z}

(2) T4 (Py,0%(9)) is o*(w)-simple.

(3) inv(Py, 0™ (w),0%(¢)) < inv(Pu, w, ).

(4) Ifinv(Py, 0*(w),0*(4)) = inv(Py,w, ¢) and Ty (Py, 1)) has no w-removable
faces, then Ty (Py, 1) has no o*(w)-removable faces.

(5) Assume that inv(Py,, c* (w),c*(¢)) = inv(Py,w, ) and w = z + xo where
Xo € M(R™) is the unique element in Theorem [J.2.2. There exists an
element w € M(Ox,q) such that Ow/dc*(w) € Ol)l(fa and if we denote
Py = {w} Un*(Q), then Py is a parameter system of Ox.q and T4 (Pg, )
has no w-removable faces, and inv(Pg,w, c*(¢)) = inv(Py,w, ¢).

(6) If inv(Py,w, ¢) = 0, then inv(P,,c*(w),c*(¢)) = 0 and inv2(P,, o*(w),
0*(p)) = inv2(Py, w, ¢).

If w divides ¢, then o*(w) divides o*(¢).

By the lemma below any non-zero element in R is reduced to an element in PW.
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Lemma 4.5. Consider any ¢ € R with ¢ # 0. Let h = ord(¢) € Zy. There exists
a mapping o : P — {2z} — k such that P = {z} U{z — a(z)z|]z € P — {z}} is a
parameter system of R containing z, T (P, ¢) is of z- Weierstrass type, the unique
z-top vertex of T (P, ¢) is {hfF}, and inv(P, z,¢) < h.

Corollary 4.6 (Resolution game). Consider a mathematical game with two players
A and B. At the start of the game a pair (R, ) of any reqular local ring R with
dim R > 1 such that R contains k as a subring, the residue field R/M (R) is isomor-
phic to k as k-algebras and R is a localization of a finitely generated k-algebra, and
any non-zero element ¢ € R is given. We play our game repeating the following
step. Before the first step we put (S,v¢) = (R, ¢): At the start of each step, player
A chooses a composition o : X — Spec(S) of finite blowing-ups with center in a
closed irreducible smooth subscheme. Then, player B chooses a closed point a € X
with o(a) = M(S). We have a morphism o* : S — Ox , of local k-algebras induced
by o. If the element o*(¢p) € Ox o has normal crossings, then the palyer A wins.
Otherwise we proceed to the next step after replacing the pair (S,v) by the pair
(Ox.ar 0" (1)).

At this game, player A can always win the game after finite steps for any R
and any non-zero element ¢ € R, even if the characteristic of the ground field k is
positive.

Remark . Note that the pair (.9, 1) satisfies the same conditions as (R, ¢) through-
out the game.

A similar game can be found in Spivakovsky [24].

By valuation theory we know that the above Corollary implies “the local uni-

formization theorem in arbitrary characteristic and in arbitrary dimension”. (Zariski
et al. [27], Zariski [26], Abhyankar [1].)

Corollary 4.7. (The local uniformization theorem in arbitrary characteristic and
in arbitrary dimension) Given any field ¥ such that X contains k as a subfield and
Y is finitely generated over k, given any projective model Xo of ¥ and given any
valuation B of dimension zero of ¥ containing k with center ag on Xy, there exists
a projective model X of ¥ on which the center of B is at a smooth point a of X
such that the inclusion relation Ox o D Ox,.qy 0f local rings holds.

5. BASIC THEORY OF CONVEX SETS

In this section we begin the study of convex sets to develop the toric theory. The
theory of convex sets will be applied to the proof of our main theorem, Therem [4.1]
in Section

Let V be any vector space of finite dimension over R.

In Section [2] we defined eight mappings

conv, affi, cone, convcone, vect, Q-vect, clos, stab : 2V — 2V

Lemma 5.1. Let X and Y be any subsets of V.
(1)
conv (D) = affi()) = clos(B) = 0,
cone(()) = conveone(f)) = vect(d) = Q-vect(d) = {0},
stab(0) = V.
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(2)
conv(X) ={a € V]a= Z Az)z for some X € map’(X,Rg) with
zesupp(A)
> A =1}
z€supp(\)
affi(X) ={a € V]a = Z Ax)x for some X € map' (X, R) with
zesupp(\)
> M@ =1}
z€supp(A)

{{ae V0a = Az for some A € Ry and some x € X} if X #10,
cone(X) =

{0} if X =0,

conveone(X) = {a € V]a = Z Az)z for some X € map’(X,Ry)},

zesupp(\)

vect(X) ={a € V]a= Z Az)z for some X\ € map’(X,R)},
z€supp(A)

Q-vect(X)={a € Vl]a= Z A@)z for some X € map'(X,Q)}.
z€esupp(N)

(3) If X is a finite set, then we have conveone(X) = .y Rz, vect(X) =
Y owex Rz, and Q-vect(X) = > Qu.

(4) For any vector space W of finite dimension over R and any homomorphism
m: V. = W of vector spaces over R, we have m(conv(X)) = conv(mw (X)),
m(affi( X)) = affi(r (X)), 7(cone(X)) = cone(w(X)), 7(convcone(X)) =
conveone(m(X)), m(vect(X)) = vect(n(X)), and 7(Q-vect(X)) = Q-vect(w(X)).

(5) For any a € V, we have conv(X + {a}) = conv(X) + {a}, afi(X + {a}) =
affi(X) + {a}.

(6)

X C conv(X) C affi(X) C vect(X),
X U {0} C cone(X) C convcone(X) C vect(X),
conv(X) C convcone(X),
X U {0} C Q-vect(X) C vect(X),
X C clos(X).

(7) If X C Y, then conv(X) C conv(Y), affi(X) C affi(Y’), cone(X) C cone(Y),
conveone(X) C conveone(Y), vect(X) C vect(Y), Q-vect(X) C Q-vect(Y),
and clos(X) C clos(Y).

(8) conv(conv(X)) = conv(X), affi(affi(X)) = affi(X), cone(cone(X)) = cone(X),
convcone(conveone(X)) = conveone(X ), vect(vect(X)) = vect(X),
Q-vect(Q-vect(X)) = Q-vect(X), and clos(clos(X)) = clos(X).
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(9)
vect(conv (X)) = conv(vect(X)) = vect(X),
vect(affi(X)) = affi(vect(X)) = vect(X),
vect(cone(X)) = cone(vect(X)) = vect(X),
vect(conveone(X)) = conveone(vect(X)) = vect(X).
(10)

conveone(conv(X)

~—
| |

nv(convecone(X)) = convecone(X ),
convcone(cone(X))

ne(convcone(X)) = conveone(X).
cone(conv(X)) = conv(cone(X)) = convcone(X),
convecone(affi( X)) = cone(affi(X)) afﬁ(convcone(X)) = affi(cone(X)) = vect(X),

(11) affi(conv(X)) = conv(affi(X)) = affi(X).
(12)

clos(affi(X)) = affi(clos(X)) = affi(X),
clos(Q-vect(X)) = clos(vect(X)) = vect(clos(X)) = vect(X),
clos(conv(X)) = conv(clos(conv(X))),
(X)) = cone(clos(cone(X))),

clos(conveone(X)) = conveone(clos(conveone(X))).

clos(cone

Lemma 5.2. Let X and Y be any subsets of V.
(1) conv(X) + conv(Y) = conv(X +Y).
(2) affi(X) + aff(Y) — affi(X + V).
(3) convcone(X) + conveone(Y) = convecone(X UY).
(4) vect(X) + vect(Y) = vect(X UY).
(5) For any vector space W of finite dimension over R and any homomorphism
m: V= W of vector spaces over R, we have n(X) +n(Y)=m(X +Y).

3
4
5

In Section 2] we defined concepts of segments, lines, convex sets, affine spaces,
cones, convex cones, vector spaces and vector spaces over Q.

Lemma 5.3. Let S be any non-empty subset of V.

(1) The following four conditions are equivalent;
(a) S is convex.
(b) For any t € Ry and any u € Ry, tS +uS = (t +u)S.
(¢) S D conv(S).
(d) S = conv(X) for some non-empty subset X of V.
(2) If S is convez, then clos(S) is also convezx, and affi(S) = affi(clos(S5)).
(3) The following sixz conditions are equivalent;
(a) S is an affine space.
(b) For anyt € R and any u € R with t +u # 0, tS +uS = (t +u)S.
(c) S D affi(S).
(d) S = affi(X) for some non-empty subset X of V.
() S#0 and S+ {—a} is a vector space for some a € S.
(f) S#0 and S+ {—a} is a vector space for any a € S.
(4) The following three conditions are equivalent;
(a) S is an affine space containing 0.
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(b) S is an affine space with S = stab(S).
(c) S is a vector space.
(5) Assume that S is an affine space. Then, stab(S) is a vector space, and we
have S = stab(S) + {a} and stab(S) = S + {—a} for anya € S.
(6) Any affine space is closed and convez.
(7) 0 € stab(S) C stab(affi(5)) C vect(S). stab(S) + stab(S) = stab(5).
(8) The following three conditions are equivalent;
(a) S is a cone.
(b) S D cone(S).
(c) S = cone(X) for some subset X of V.
(9) Any cone contains 0.
(10) If S is a cone, then clos(S) is also a cone, and vect(S) = vect(clos(S)).
(11) The following four conditions are equivalent;
(a) S is a convex cone.
(b) S is conver and S is a cone.
(¢) S D convcone(S).
(d) S = convcone(X) for some subset X of V.
(12) Any convez cone contains 0.
(13) If S is a convex cone, then clos(S) is also a convex cone, and vect(S) =
vect(clos(5)).
(14) If S is a convex cone, then SN (—=S) is the mazimal vector space contained
in S with respect to the inclusion relation.
(15) The following three conditions are equivalent;
(a) S is a vector space.
(b) S D vect(S).
(c) S =vect(X) for some subset X of V.
(16) Any vector space contains 0.
(17) Any vector space is closed, it is an affine space containing 0, and it is a
convex cone.
(18) The following three conditions are equivalent;
(a) S is a vector space over Q.
(b) S D Q-vect(S).
(¢) S =Q-vect(X) for some subset X of V.
(19) Any vector space over Q contains 0.
(20) The following three conditions are equivalent;
(a) S is closed.
(b) S D clos(S).
(¢) S =clos(X) for some subset X of V.

Lemma 5.4. Let S and T be any subsets of V.

(1) If S and T are convez, then S + T is convex. If S and T are conver and
SNT #0, then SNT is convex.

(2) If S and T are affine spaces, then S+ T is an affine space. If S and T are
affine spaces and SNT # (), then SNT is an affine space.

(3) If S and T are cones, then S+ T and SNT are cones.

(4) If S and T are convex cones, then S+ T and SNT are conver cones.

(5) If S and T are vector spaces, then S +T and SNT are vector spaces.

(6) If S and T are vector spaces over Q, then S+T and SNT are vector spaces
over Q.
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For any affine space S of V, the dimension dim S of S is defined. It satisfies
dim S € Zp, 0 < dim S < dim V and dim S = dimstab(S).

Definition 5.5. Let S be any convex subset of V. We define
dim S = dim affi(S) € Zo,
and we call dim .S the dimension of S.
We define
0S = S Nclos(affi(S) — 5),
S° =5 — clos(affi(S) — 5),
we call 0S the boundary of S, and we call S° the interior of S.

Lemma 5.6. (1) Let S be a convex subset of V. dim S € Zg, and 0 < dim S <
dim V. If S is an affine space, then the dimension of S as a convex set and
the dimension of S as an affine space are equal.

(2) For any convez set S of V, we have dim S = dim affi(S) = dim clos(S).

(3) Let S and T be convex subsets of V with S C T. We have dim S < dimT.
(4) Let S be a convex subset of V. SUS° = S. SN S° = 0. S° isa
non-empty open subset of affi(S). If S is closed, then S is also closed.

(5) For any convex cone S of V, we have affi(S) = vect(S), dim S = dim vect(S),

05 = S Nclos(vect(S) — 5), S° =5 — clos(vect(S) — S) and S° is a non-
empty open subset of vect(S).

Remark . Consider any convex subset S and T of V with S C T. We have dim § <
dimT. If S and T are affine spaces and dim S = dim 7T, then we have S = T.
However, in general, it does not follow S = T from the assumption dim .S = dim T

In Section 2] we defined concepts of convex polytopes, convex polyhedral cones,
convex pseudo polytopes and simplicial cones.

Lemma 5.7. (1) Any convex polytope in V is convex, compact and closed.

(2) Any convex polyhedral cone in V is a closed convex cone.

(3) Any convex pseudo polytope in V is convex and closed.

(4) Any vector space in V is a convex polyhedral cone. Any simplicial cone in
V is a convex polyhedral cone.

(5) Any affine space in V is a convex pseudo polytope. Any convex polyhedral
cone in V' is a conver pseudo polytope. Any convex polytope in V is a
convex pseudo polytope. Any compact conver pseudo polytope in V is a
convex polytope.

In Section 2 we defined concepts of lattices, dual lattices and regular cones.
By definition we know that there exists a lattice N of V. Let N be any lattice
of V.

Definition 5.8. Let S be any subset of V.

(1) We say that S is a rational convexr polyhedral cone over N, or a convex
polyhedral cone S is rational over N, if there exists a finite subset X of
Q-vect(N) with S = convcone(X).

(2) We say that S is a rational convex pseudo polytope over N, or a convex
pseudo polytope S is rational over N, if there exist finite subsets X,Y of
Q-vect(N) with S = conv(X) + convcone(Y') and X # 0.
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The dual lattice N* is defined. We have

N*={weV*|{w,a) € Zforanya e N} C V",

by definition.

Lemma 5.9. (1) N is a submodule of V', N is a free module of finite rank over

(2)
(3)

(11)

(12)

Z with rankN = dim V', and vect(N) = V.

Any Z-basis of N is a Q-basis of Q-vect(N), and is a R-basis of V.

For any non-empty finite subset X of N, the following three conditions are
equivalent:

(a) X is linearly independent over Z.

(b) X is linearly independent over Q.

(¢) X is linearly independent over R.

The dual lattice N* of N is a lattice of the dual vector space V* of V.. The
dual lattice N** of N* is equal to N.

A convex polyhedral cone S in 'V is rational over N, if and only if, S =
conveone(X) for some finite subset X of N.

For any vector space S in V the following three conditions are equivalent:
(a) S is a rational polyhedral cone over N.

(b) S = vect(X) for some finite subset X of N.

(¢) NNS is a lattice of S.

For any rational polyhedral cone S over N in'V, vect(S) is a rational vector
space over N in V.

Any regular cone over N in V is a rational simplicial cone over N.
A convex pseudo polytope S in V is rational over N, if and only if, S =
conv(X) 4 convcone(Y') for some non-empty finite subset X of Q-vect(N)
and some finite subset Y of N.

For any affine space S in V, the following two conditions are equivalent:
(a) S is a rational convex pseudo polytope over N.

(b) S = {a} + vect(Y) for some x € Q-vect(N) and some finite subset Y

of N.

For any rational affine space S over N in V, stab(S) is a rational vector
space over N in V.
For any rational convex pseudo polytope S over N in'V, affi(S) is a rational
affine space over N in V.

We consider any vector space W of finite dimension over R and any homomor-
phism w : V. — W of vector spaces over R. The dual homomorphism «* : W* — V*
is defined, and is a homomorphism of vector spaces over R. The kernel 7=1(0) of
7 1s a vector subspace of V', the image w(V') is a vector subspace of W, the image
7*(W*) of 7 is a vector subspace of V*, and the kernel 7*~1(0) of ©* is a vector
subspace of W*.

(13)

The following seven conditions are equivalent;
(a) 7=1(0) 4s rational over N.
) NNx=%0) is a lattice of 7=1(0).
(¢) w(N) is a lattice of m(W).
(d) There exists a lattice Q of W satisfying @ N7w(V) = w(N).
) ©(W*) is rational over N*.
) N*Na*(W*) is a lattice of m*(W™*).
) There exists a lattice Q of W* satisfying 7*(Q) = N* N7 (W*).
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(14) Assume that equivalent seven conditions in the above 13 hold. For any
lattice Q of W* satisfying m*(Q) = N* N 7*(W*), Q N7*~1(0) is a lattice
of T1(0).

6. CONVEX CONES AND CONVEX POLYHEDRAL CONES

We study convex cones and convex polyhedral cones.
Let V' be any vector space of finite dimension over R, and let N be any lattice
of V.

Definition 6.1. Let S be any cone in V. We say that S is strongly convez, if S is
convex and S N (—=S5) = {0}.

In Section 2] we defined the dual cone SV|V of any convex cone S in V. By
definition

SYIV ={w € V*[{w,a) >0 for any a € S} C V*,

for any convex cone S in V.

Lemma 6.2. Let S be any convex cone in V.

(1) The dual cone S|V of S is a closed convex cone in the dual vector space
V* of V.
(2) Let W be any vector subspace in V. with S C W. S is a convex cone in W
and the dual cone SVIW of S in W* is defined.
Let v : W — V denote the inclusion homomorphism. The dual homo-
morphism * : V* — W* is defined, which is surjective.
SVIV = 7SV W).
(3) SVIVV|V* = clos(S).
(4) SVIVV|V* =S, if and only if, S is closed.

When we need not refer to V, we also write simply SV, instead of SV|V. In
Section 2] we defined the concepts of simplicial cones and regular cones.

Lemma 6.3. Let S and T be any convex cones in V.

1) If SCT, then SY D TV.

) Assume that S and T are closed. S C T, if and only if, S¥ D TV.

Yy (S+T)V=8VNnTV.

) Assume that S and T are closed. (SNT)Y = clos(SY +TV).

) Assume that S is a vector space. By ¢ : S — V we denote the inclusion
homomorphism. * : V* — S*.

SV ={w e V*|{w,a) =0 for any a € S} = *~1(0) C V*,

SV is also a vector space, and dim S + dim SV = dim V.

(6) vect(S)Y =SV N(—=SY). vect(S)V is the mazimal vector space contained in
SV with respect to the inclusion relation.

(7) Assume that S is closed. vect(SY) = (SN (=9))Y and dim SY = dimV —
dim(S N (=9)). dim SV = dimV, if and only if, S is strongly convex.

(8) dimS + dim SV > dimV. dim S + dim SV = dim V, if and only if, S is a
vector space.

(9) We denote n = dimV € Zg. Let e : {1,2,...,n} — V be any mapping
such that the image e({1,2,...,n}) of e is a basis of V', and let I,J, K, L
be any subset of {1,2,...,n} such that [ UJUK UL = {1,2,...,n} and

(

(2
(3
(4
(5
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the intersection of any two of I, J, K, L is empty. We denote the dual basis
of {e(i)i € {1,2,...,n}} by {eV(¥)|i € {1,2,...,n}}. We assume

(€ ),e) = {1 b

0 ifi#j,

foranyie{1,2,....,n} and any j € {1,2,...,n}.

If

S= Z{O}e(i) + ZRe(j) + Z Roe(k) + ZRO(—G(@%
icl jeJ kEK ¢eL
then
SV = ReV(i) + > {0} () + > Roe" (k) + > Ro(—e"(£)).
icl jeJ keK leL

If S is a simplicial cone with dim S = dim V', then SV is a simplicial cone

with dim SY = dim V*.
If S is a reqular cone over N with dimS = dimV, then SV is a reqular
cone over N* with dim SV = dim V*.

Remark . Assume V = R*, S = {(z,y,2) € V|z > 0,y > 0,z > —2,/7y} and
T = {(z,y,2) € Vlz =0,z > 0}. S and T are closed convex cones in the vector
space V with dim V' = 3. (0,0, —1) € clos(S+T') and (0,0, —1) € S+T. Therefore
S+ T is not closed.

Lemma 6.4. For any non-empty subset S of V, the following two conditions are
equivalent:

(1)
(2)

S is a reqular cone over N with dim S = 1.
S is a rational strongly convex polyhedral cone over N with dim S = 1.

Definition 6.5. Let S be any convex polyhedral cone in V. We consider the dual
cone SV = SV|V C V* of S.

(1)

For any w € SV, we denote
A(w,S|V) ={z € S|{w,z) =0} C S.

When we need not refer to V or to the pair (S, V'), we also write simply
A(w, S) or A(w), instead of A(w, S|V).

Let F be any subset of S. We say that F' is a face of S, if F = A(w, S|V)
for some w € SV.

It is easy to see that any face F' of S is a closed convex cone, and the
dimension dim F' € Zg of F, the boundary OF of I’ and the interior F’° of
F are defined.

Any face F' of S with dim F' = 0 is called a vertez of S. Any vertex of
S is a subset of S with only one element. Any face F' of S with dim F' =1
is called an edge of S. Any face F' of S with dim F = dim S — 1 is called a
facet of S. Any face F of S with F # S is called a proper face of S. The
subset SN (—S) of S is called the minimal face of S.

By F(S) we denote the set of all faces of S.
For any i € Z, the set of all faces F with dim F' = ¢ is denoted by F(5);,

and the set of all faces F' with dim F' = dim S — 7 is denoted by F(5)*.
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(4) Let F be any face of S. We denote
A°(F,S|V)={w € SY|F = A(w,S|V)} C S¥Y C V¥,
A(F,S|V)={we SY|F C A(w,S|V)} Cc SY CcV*.
We call A°(F,S|V) the open normal cone of F', and we call A(F,S|V)

the normal cone of F'.

When we need not refer to V' or to the pair (S, V'), we also write simply
A°(F,S) or A°(F), A(F,S) or A(F) respectively, instead of A°(F,S|V),
A(F, S|V).

Theorem 6.6. Let S be any convex polyhedral cone in V', and let X be any finite
subset of V with S = conveone(X). We consider the dual cone S¥Y = SY|V C V* of
S. For simplicity we denote s = dimS € Zg, L=SN(=S) C S, { =dim L € Zy,
M=5"Nn(-SY)csv.

(1) Consider any wvector space U of finite dimension over R with dimS <
dimU < dimV, any injective homomorphism v : U — V of vector spaces
over R such that S C v(U), and any subset F' of S. The inverse image
v=1(8S) is a convex polyhedral cone in U. The set F is a face of S, if and
only if, v=Y(F) is a face of v1(S).

(2) Consider any vector space W of finite dimension over R with dimV <
dim W, any injective homomorphism w : V. — W of vector spaces over R,
and any subset F' of S. The image 7(S) is a convex polyhedral cone in W.
The set F is a face of S, if and only if, 7(F) is a face of 7(S).

B)l<s. l=s<L=5<S5=rvect(S9).

(4) Let F be any face of S.

(a) F = convcone(X N F) = SNvect(F). vect(F) = vect(X N F).

(b) F is a convex polyhedral cone in V.

(c) If S is rational over N, then F is also rational over N. If S is a
simplicial cone, then F is also a simplicial cone. If S is a reqular cone
over N, then F 1is also a reqular cone over N.

d) L=Fn(-F)CF.¢{<dimF <s.

(e) Let G be any face of S with G C F. We have dim G < dim F'. dim G =
dim F', if and only if, G = F.

(f) Let G be any subset of F. G is a face of the convex polyhedral cone F,
if and only if, G is a face of S with G C F.

(¢) IfeeS,yeSandx+y€eF, thenx € F andy € F.

(5) F(S) is a finite set. S € F(S)s and F(S)s = {S}. S contains any face
of S. L € F(S)e and F(S)¢ = {L}. L is contained in any face of S.
L = conveone(X NL) = vect(X NL). For any i € Zo, F(S); # 0 if and
only if £ <i<s.

(6) Let F and G be any face of S with F C G. We denote f = dim F and g =
dimG. £ < f < g <s. There exist (s—0+1) of faces F(£), F({+1),...,F(s)
satisfying the following three conditions:

(a) Foranyie {{,0+1,...,s=1}, F(i) C F(i+1).

(b) For anyie {£,{+1,...,s}, dim F(i) = .

(c) F&)=L,F(f)=F,F(9)=G,F(s) =S.

et F' be any face of S.
F=0FUF°. OF N F° =1{.
F°=F&J0F=0«<F=L.
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()
or= | @G
GEF(F)—{F}
(d) F° is a non-empty open subset of vect(F'). For any a € F° and for
any b € F, conv({a,b}) — {b} C F°. F° is convex. clos(F°) = F.
(8) Consider any m € Z4 and any mapping F : {1,2,...,m} — F(S). The
intersection Nieq12,...m}F (1) is a face of S.
(9) Any proper face F of S is the intersection of all facets of S containing F.
(10) We consider any two faces F,G of S. F° NG # 0, if and only if, F C G.
F°NG° #0, if and only if, F = G.
(11) M = A(S) = vect(S)".
(12) Assume £ < s. Let F € F(S)! be any facet.
(a) M CA(F). M # A(F).
(b) For any wp € A(F) — M we have A(F) = Rowp + M.
(c) If S is rational over N, then (A(F)— M)NN* £ 0.
(13) Note that ¢ < s, if and only if, F(S)* # 0. In case { < s we take any
element wp € A(F) — M for any F € F(9).

SV = conveone({wr|F € F(S)'}) + M, S = ﬂ (Rowr)Y Nvect(S).
FeF(S)t

(14) SV is a convex polyhedral cone in V*. If S is rational over N, then SV is
rational over N*.

(15) Let F be any face of S.

(a) A(F) is a face of SV.
(b) A(F) = vect(F)¥V N SY. vect(A(F)) = vect(F)V.
(c) A°(F)=A(F)°. A(F) = clos(A°(F)).

(16) For any face F of S, A(F,S|V) is a face of SV, and dim A(F,S|V) =
dimV — dim F. For any two faces F, G of S with F C G, A(F,S|V) D
A(G, S|V).

For any face F of SV, A(F, SV |V*) is a face of S, and dim A(F, SV|V*) =
dim V —dim F. For any two faces ', G of S¥ with F C G, A(F,SV|V*) D
A(G, SVIVF).

The mapping from F(S) to F(SY) sending F € F(S) to A(F,S|V) €
F(SV) and the mapping from F(SV) to F(S) sending F € F(SV) to
A(F,SV|V*) € F(S) are bijective mappings reversing the inclusion relation
between F(S) and F(SY), and they are the inverse mappings of each other.
Furthermore, if F € F(S) and F € F(SV) correspond to each other by
them, then dim F + dim F = dim V.

(17) Assume £ < s. Let F' € F(S)p+1 be any element.

(a) LCF.L#F
(b) For any tp € F — L we have F = Rotp + L.

(18) In case £ < s we take any element tp € F — L for any F € F(S)¢+1. Note

that ¢ < s, if and only if, F(S)e+1 # 0.

S = convcone({tp|F € F(S)e41}) + L, S¥ = ﬂ (Rotr)Y Nvect(SY).
FE.F(S)g+1

(19) S is strongly convers {0} is a face of S < S contains no vector subspace
of V' of dimension positive < SN (—S) = {0} & dimSY = dim V.
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(20) The family {F°|F € F(S)} of subsets of S gives the equivalence class de-
composition of S. In other words, the following three conditions hold:
(a) F° #£0 for any F € F(S).
(b) If F € F(S), G € F(S), and F°NG° #£ 0, then F° = G°.
()
S = Fe.
FeF(S)
(21) F(S) is a fan in V, and the support of F(S) is equal to S. In other words,
the following four conditions hold:
(a) F(S) is a non-empty finite set whose elements are convex polyhedral
cones in V.
(b) For any F € F(S) and for any G € F(S), FNG is a face of F, and
FNGis a face of G.
(¢) If F € F(S) and G is a face of F, then G € F(S).

()
s= |y F
FeF(S)
(22) Consider any vector space W of finite dimension over R and any homo-
morphism 7 : V. — W of vector spaces over R. The image 7(S) is a convex
polyhedral cone in W, and it satisfies w(S)° = w(S°).

Proof. See Fulton [8] and Cox [1]. O

Corollary 6.7. (1) For any convex polyhedral cone S in V, the dual cone SV
is a convex polyhedral cone in V*. If moreover, S is rational over N, then
SV is rational over N*.

(2) For any convex polyhedral cones S and T in'V, S+ T and SNT are convex
polyhedral cones in V. If moreover, S and T are rational over N, then
S+ T and SNT are rational over N.

(3) For any convex polyhedral cones S and T in V, (S+T)V =SV NTV and
(SNT)Y =SV +1TV.

(4) For any convex polyhedral cone S in V, any vector space W of finite di-
mension over R and any homomorphism w : V. — W of vector spaces over
R, (S) is a convex polyhedral cone in W. If moreover, S and 7~1(0) are
rational over N, then w(S) is rational over Q for any lattice Q of W with
m(N)=Qnmx(V).

(5) For any convex polyhedral cone S in V', any vector space U of finite di-
mension over R and any homomorphism v : U — V of vector spaces over
R, v=1(S) is a convex polyhedral cone in U. If moreover, S and v(U) are
rational over N, then v=1(S) is rational over K for any lattice K of U with
v(K)=Nnv(U).

Lemma 6.8. Let m € Z, be any positive integer, and let S be any mapping from
the set {1,2,...,m} to the set of all convex polyhedral cones in V. We denote
S (l S@cwv
ie{1,2,...,m}
(1) S is a convex polyhedral cone in V. SV = Dicqi2,..my S(@)Y. If S(i) is

rational over N for any i € {1,2,...,m}, then S is rational over N.
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(2) If Nicqr,2,....myS(1)° # 0, then 5o = Nie{1,2,....m3S(1)°.
Let F' be any face of S.
(3) There exists uniquely a face F(i) of S(i) with F° C F(i)° for any i €
{1,2,...,m}.
Below, we assume that F(i) € F(S(i)) and F° C F(i)° for anyi € {1,2,...,m}.
(4) F C F(i) for anyi € {1,2,...,m}.

(5) )
F= () F@.
i€{1,2,....,m}
(6)
FP= () FG°
i€{1,2,...,m}
(7) )
vect(F) =[] vect(F(i)).
i€{1,2,....m}
(8)

AF,S) =Y A(F(>),50)).
i€{1,2,...,m}
Let G(i) be any face of S(i) for any i € {1,2,...,m}.
(9) The intersection Nic(1,2,....m}G(1) is a face of S.
(10) If F C G(i) then F(i) C G(i), for any i € {1,2,...,m}.
(1) 1f
F= (1 G,
i€{1,2,...,m}
then F(i) C G(i) for anyi € {1,2,...,m} and the following three conditions
are equivalent:

(a)
(| GG)° #0.
i€{1,2,....,m}
((bg F@i)=G®) for anyi € {1,2,...,m}.
FF= (1 GG
i€{1,2,...,m}

7. SIMPLICIAL CONES AND REGULAR CONES

We study simplicial cones and regular cones.
Let V be any vector space of finite dimension over R, and let N be any lattice
of V.

Lemma 7.1. Let S be any simplicial cone in V.

(1) The cone S is strongly convex. The set {0} is a face of S.

(2) $F(S)1 =dimS. 0 <dimS < dimV.

(3) Any face of S is a simplicial cone in V. For any face F of S, F(F) C F(S)
and ]:(F)l C ]:(S)l

Lemma 7.2. Let S be any simplicial cone in V.



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 41

(1) F(F); € 275 and 4F(F); = dim F for any F € F(S). F(F); € F(G)
for any F € F(S) and any G € F(S) with F C G.

S pex E € F(S) and dim(Y. pe x E) = $X forany X € 275 S EC
Y pey E for any X € 27N and any Y € 275 with X C Y.

The mapping from F(S) to 2751 sending F € F(S) to F(F); € 27
and the mapping from 27 to F(S) sending X € 275 to Yeex E €
F(S) are bijective mappings preserving the inclusion relation between F(S)
and 275 and they are the inverse mappings of each other.

Furthermore, if F € F(S) corresponds to X € 27 () by them, then
dim F = £X. The element {0} € F(S) corresponds to § € 2751 by them,
and S € F(S) corresponds to F(S); € 2751 by them.

(2) For any X € 271 and any Y € 2751

(B pn= Y &

FeX EecY EeXny
(Y_BE)+()_E)= > E
EeX EcY EeXUY

(3) For any F € F(S) and any G € F(S) the following claims hold:
(a) FNGe ]:(S) and ]'—(FQG)l :]:(F)l ﬂ]:(G)l
(b) F+G e F(S) and F(F + @), = F(F)yUF(G). F C F+G and
G C F+G. IfH € F(S) satisfies F C H and G C H, then F+G C H.
(F+G)° =F°+G°.
(c) FNG ={0} and F + G = S, if and only if, F(F)1 N F(G)1 =0 and
F(F)UF(G)=F(Sh

Definition 7.3. Let S be any simplicial cone in V', and let F' be any face of S. We
denote
FOP|S = > E e F(9),
E€F(S)—F(F)
and we call F°P|S the opposite face of F over S. When we need not refer to S, we
also write simply F°P, instead of F°P|S.

Lemma 7.4. Let S be any simplicial cone in V.

(1) For any face F of S, the following claims hold:
(a) F°P = F°P|S is a face of S. dim F + dim F°P = dim S.
(b) FNFP = {0} and F + F® = S. IfG € F(S), FNG = {0} and
F+G=S8, then G = F°P.
(c) (FoP)P = F.
(d) F(FP) = F(Sh—=F (). If G € F(S) and F(G)1 = F(S)1—F(F)1,
then G = F°P
(2) {0}°p =S. S°P = {0}.
(3) For any F € F(S) and any G € F(S), the following claims hols:
(a) F C G, if and only if, F°P D G°P.
(b) (FNG)oP = FoP 4 GoP.
(c) (F+ G)°P = F°PNGeP.
(4) Consider any F € F(S) and any G € F(S) with F C G. F € F(G),
F°P|G = (F°P|S)NG, FP|S = (F°P|G)+(G°P|S) and (F°P|G)N(G°P|S) =
{0}.



42 TOHSUKE URABE

(5) The mapping from F(S) to itself sending F' € F(S) to F°P € F(S) is a
bijective mapping reversing the inclusion relation. Its inverse mapping is
equal to itself.

Lemma 7.5. Let S be any simplicial cone in V with dimS = dimV and let B
be any R-basis of V with S = convcone(B). The dual basis of B is denoted by
{fVIf € B}. {fV|f € B} is an R-basis of V* and for any f € B and any g € B

v 1 ifg=1,
<g’f>‘{o ifg#f.

SY = SY|V = convcone({f"|f € B}). For any subset X of B, > ;cxRof is a
face of S, 37 e Rof" is a face of SV, and

A((D Rof)PIS,S) = Y RofY,

FeX FeX
A RofV)?[8Y,5Y) = 37 Rof.
FeX FeX

Lemma 7.6. Let S be any regular cone over N in V.

(1) The cone S is a rational simplicial cone over N in V.

(2) The intersection N N vect(S) is a lattice of vect(S). S is a regular cone
over N Nvect(S) in vect(S). The residue module N/(N Nvect(S)) is a free
module over Z of finite rank. rank(N/(N Nvect(S))) = dimV — dim S.

(3) Any face of S is a regular cone over N in V.

(4) Ifdim S = 1, then there exists uniquely an element bg/n of SNN satisfying
SNN = Zobs/n-

Definition 7.7. Let S be any regular cone over N in V.
If dim S = 1, we take the unique element bg,n of SNN satisfying SNN = Zobg/n-
If dim S # 1, we put

bS/N: Z bE/NESQN
EcF(S)

We call bg,ny € SN N the barycenter of S over N. When we need not refer to
N, we also write simply bg, instead of bg/n-

Lemma 7.8. Let S be any regular cone over N in V.

(1) The set {bp|E € F(S)1} is a Z-basis of the lattice N Nvect(S) of vect(S),
and it is an R-basis of the vector space vect(S).

S = Z Robg = convcone({bg|FE € F(S)1}),
EeF(S)1
SO - Z R+bE
EeF(S)1
For any E € F(S)1, E =Robg. F(S)1 = {Robg|E € F(S)1}.
(2) If a basis B over Z of N and a subset C of B satisfies S = convcone(C),
then §C' = dim S and C = {bg|E € F(5)1}.
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Lemma 7.9. (1) For any regular cone S over N in V with dim S = dimV,

the set {bp|E € F(S)1} is a Z-basis of N.

For any Z-basis B of N, convcone(B) is a regular cone over N in V
with dim convcone(B) = dim V.

The mapping sending any regular cone S over N in V with dim S =
dimV to {bg|E € F(S)1} and the mapping sending any Z-basis B of N
to conveone(B) are bijective mappings between the set of all rqular cones S
over N in V with dim S = dim V' and the set of all Z-bases B of N, and
they are the inverse mappings of each other.

Below we consider any regular cone S over N in V with dim S = dim V. Note
that {bg|E € F(S)1} is a Z-basis of N and it is an R-basis of V. By {bL|E €
F(S)1} we denote the dual basis of {bg|E € F(S)1}, which is a R-basis of V*. We
assume that for any D € F(S)1 and any E € F(S):

1 ifD=F

(2) The set {b}|E € F(S)1} is a Z-basis of N*.
(3) SV is a reqular cove over N* in V* with dim SV = dim V*.

SV = convcone({by|E € F(S)1}).

For any E € F(S)1, Roby, € F(SY)1 and brypy, = by F(SY)1 = {Robp|E €
F(S)1}, and {bp|D € F(SV)1} = {b}|E € F(S)1}.

Lemma 7.10. Let S be any regular cone over N in V.

(1) Let W be any vector space of finite dimension over R, let Q be any lattice
of W, and let T be any reqular cone over @ in W. dim S = dim 7T, if and
only if, there exists an isomorphism ¢ : vect(S) — vect(T') of vector spaces
over R satisfying ¢(S) =T and ¢(N Nvect(S)) = Q Nvect(T).

(2) bs = bS/N € S°NN. Robs "N = Zgbg.

(3) Consider any a € SN N with RoaNN = Zoa. ¢(a) = a for any homomor-
phism ¢ : vect(S) — vect(S) of vector spaces over R satisfying ¢p(S) = S
and ¢(N Nvect(S)) = N Nvect(S), if and only if, a =0 or a = bg.

(4) bs = 0 < dimS = 0. Robs C S. Robs = S & Robs is a face of S &
dimS <1

(5) Assume F € F(S),dimF > 1,A € F(S), and F ¢ A.

(a) A+Rpbp is a regular cone over N in V. dim(A +Rpbp) = dim A+ 1.

(b) Robr € ]'—(A + Robp)l. A€ ]:(A + RobF)l. Robr.NA = {0} Robp =
A°P|(A + Robr). A= (Robp)°P|(A + Robp).

(c) F(A) c {N e F(S)|F ¢ N'}. F(A) = {A € F(A+ Rpbp)|Robr ¢
A} AN + Robp|A € F(A)} = {A € F(A +Robr)|Robr C A'}.

(d) A+Robp CA+F 6.7:(5) (A—I—Robp)o C (A+F)O

(e) If dim F > 2, then A +Robp ¢ F(S). If dim F = 1, then A + Robp =
A+F e F(9).

8. FANS

We begin the study of fans. We define notations and concepts to develop our
theory.

Let V' be any vector space of finite dimension over R, and let N be any lattice
of V. Let ® be any finite set whose elements are convex polyhedral cones in V.
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We say that & is strongly conver, if any A € ® is strongly convex. We say that
d is simplicial, if any A € ® is a simplicial cone. We say that ® is rational over N,
if any A € ® is rational over N. We say that ® is regular over N, if any A € ® is
a regular cone over N.

We denote
@ =] AcV,
AED
®° =] A cw
Aed

We call |®| and |®|° the support of ® and the open support of ® respectively. We
denote

" = {Ae®IfAecPand ACA, then A=A} C .

We call any element in ®™** a mazimal element of ® and we call ®™** the set of
maximal elements of ®.

Note that F(A) is a non-empty finite set whose elements are convex polyhedral
cones in V for any A € &. We denote

o = | J F(a)c2Y,
Aed

and we call ® the face closure of ®.
In case ® # () we define

dim ® = max{dim A|A € ®} € Z,,

and we call dim ® the dimension of ®. In case ® = () we do not define dim ®. For
any ¢ € Z we denote

®; = {A € ¢|dim A =i},
o — {A € P|dimA =dim® —i} if & # 0,
R if @ = 0.
®,; and & are subsets of ®.
Consider any subset F' of V. We denote
P\NF={AecPACF}CQ,
O/F={AcPADF}CO.

Consider any vector space W of finite dimension and any homomorphism 7 :
V' — W of vector spaces over R. We denote

.0 = {r(A)|A € &} c 2%,

and we call 7, ® the push-down of ® by .
Consider any vector space U of finite dimension and any homomorphism v : U —
V of vector spaces over R. We denote

V0 = {1 (A)A € B} C 2Y,

and we call v*® the pull-back of ® by v.

Consider the case ® # . We say that @ is flat, if dim® = dim vect(|®|) and
omax — @Y. Let A € ® be any element. We say that ® is starry with center in A,
if & = (®/A)f.
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Lemma 8.1. Let ® be any finite set whose elements are convex polyhedral cones

mV.

) |®] is a closed subset of V. If |®| £ 0, |®| is a cone in V.

) [0f° C [0 clos(|D]°) = @],

) (I)max C @ ((I)max)max J— (I)max' |(I)max| J— |(b|

) ®f is a finite set whose elements are convex polyhedral cones in V. & C ®f.
(@fe)fe = ofe, |@fe| = |@|. (Dfc)max = omax_ [f & s simplicial, then ®F is
also simplicial. If ® is rational over N, then ® is also rational over N.

If ® is regular over N, then ® is also regular over N.

(5) Consider any vector space W of finite dimension and any homomorphism
m: V. — W of vector spaces over R. The set m,® is a finite set whose
elements are convex polyhedral cones in W. |m.®| = 7(|®]). If & and
71(0) are rational over N, then 7,® is rational over Q for any lattice Q
of W with m(N) = Q Nn=(V).

(6) idy«® = ®. For any vector spaces W, W' of finite dimension and any
homomorphisms w : V. — W, o' : W — W' of vector spaces over R,
(7'm)® = 7w, P.

(7) Consider any vector space U of finite dimension and any homomorphism
v: U — V of vector spaces over R. The set v*® is a finite set whose
elements are convex polyhedral cones in U. |[v*®| = v=1(|®|). If ® and
v(U) are rational over N, then v*® is rational over K for any lattice K of
U with v(K) = Nnv(U).

(8) idy,® = ®. For any vector spaces U, U’ of finite dimension and any
homomorphisms v : U — V, v/ : U — U of vector spaces over R,
(v/)*® = v™*v*®.

(9) Consider any vector spaces W, U of finite dimension and any homomor-
phisms m:V — W, v:U — V of vector spaces over R.

P=0|®=0=0&[? < |P°=0c " =)o o =)<
@ =0 v*d =1.
If ® # (), then dim m,® < dim ® = dim ™% = dim & < dim vect(|®|).
(10) Consider any subset X of ®, any i € Z, any subset F' of V, any vector
spaces W, U of finite dimension and any homomorphisms m : V. — W,
v:U =V of vector spaces over R.
S| C |®, [Z° C |®]°, &f c o, %, ¢ @, X\F C ®\F, ¥/F C ®/F,
T2 C P, and v*¥X C v* .
(11) Let F and G be any subsets of V. If F D G, (P\F)\G = ®\G. If F C G,
(®/F)/G=2/G. P\F =P < |®| C F.
(12) Assume @ # ().
omax o @Y £ (). dmax = @0 if and only if, dim A = dim ® for any
A € pmax,

The following four conditions are equivalent:

(1
(2
(3
(4

(a) @ is flat. In other words, dim ® = dim vect(|®|) and ™8 = &0,
(b) dim A = dimvect(|®|) for any A € O™,

(c) vect(A) = vect(|®|) for any A € Pmax,

(d) vect(A) = vect(A) for any A € ™ and any A € P>,

Definition 8.2. (1) Any subset ¥ of 2V satisfying the following three condi-
tions is called a fan in V.
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(a) The set X is a non-empty finite set whose elements are convex poly-
hedral cones in V.

(b) For any A € ¥ and any A € ¥, ANAisaface of A, and ANAis a
face of A.

(c) For any A € ¥ and any face A of A, A € X.

(2) Let X be any fan in V. We call an element L € X the mimimum element
of ¥, if dim L < dim A for any A € X.

(3) Let ¥ and ® be any finite sets whose elements are convex polyhedral cones
inV.

If for any A € 3 there exists A € & with A C A, then we say that ¥ is
a subdivision of ®.

(4) Let J be any finite set and let ® be any mapping from J to the set of all
finite sets whose elements are convex polyhedral cones in V. For any j € J,
®(4) is a finite set whose elements are convex polyhedral cones in V. We
denote

A
ﬂ ®(j) = {A € 2Y|A = NjesA(j)) for some mapping A : J — 2V
jeJ

such that A(j) € ®(j) for any j € J} c 2V,

and we call Njc ;P (j) the real intersection of ®(j),j € J.
Note that N s ®(j) is different from the intersection Njec ;@ (j) of ®(5),j €

J.
When J = {1,2,...,m} for some m € Z,, we also denote
A
()AR(2)N- - AB(m) = () ().
jed

(5) Let X be any fan in V', let W be any vector space of finite dimension over
R, let T be any subset of W, and let ¢ : |3| — T be any mapping.

We say that ¢ is piecewise linear, if for any A € X there exists a
homomorphism ¢a : vect(A) — W of vector spaces over R such that
@d(a) = pa(a) for any a € A.

(6) Let 3 be any fan in V, and let ¢ : |3| — R be any piecewise linear function.

Assume that ¥ is rational over N. We say that ¢ is rational over N, if
for any A € X, there exists a linear function ¢a : vect(A) — R such that
¢(a) = da(a) for any a € A and ¢a (N Nvect(A)) C Q.

Assume that the support |X| of ¥ is convex. We say that ¢ is convex
over %, if the following two conditions are satisfied:

(a) For any a € |X|, any b € |[E| and any t € R with 0 < ¢t < 1, ¢((1 —
ta+tb) > (1 — t)p(a) + to(b).

(b) Ifae B, be|X],teR,0<t<land ¢((1—t)a+tb) = (1 —t)p(a)+
to(b), then {a,b} C A for some A € .

Example 8.3. Let S be any convex polyhedral cone in V. F(S) is a fan in V.
|F(S)| = S. If S is a simplicial cone, then F(S) is a simplicial fan. If S is a rational
convex polyhedral cone over N, then F(S) is a rational fan over N. If S is a regular
cone over N, then F(S) is a regular fan over N.

Lemma 8.4. Let ¥ be any fan in V.
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(1) ANAeX for any A € X and any A € X.
(2) Consider any A € X and any A € ¥. The following three conditions are
equivalent:
(a) ACA.
(b) A is a face of A.
(c) A°NA#0.
(3) Consider any A € X and any A € ¥. The following three conditions are
equivalent:
(a) A=A.
(b) dimA =dimA and A C A, or dimA =dimA and A D A.
(c) A°NA°#0.
(4) ¥ = 3l = (Zmaxyfe |3} = |$]° = |8M8X|. For any subset ® of &, & =
Y\|®| C ¥. Forany A € ¥, F(A) = {A}c=Y\ACX.
(5) The family {A°|A € X} of subsets of V' gives an equivalence class decom-
position of |X|, in other words, the following three conditions hold:
(a) A° £ for any A € 3.
(b) If A°NA° # (), then A° = A° for any A € X and any A € X.

(c)
2= A

AeX

(6) For any subset ® of X, the following three conditions are equivalent:
(a) @ is a fan in V.
(b) @ # 0 and X\A C @ for any A € P.
(c) ® #0 and & = dfc,
(7) For any non-empty subset ® of ¥, ® is a fan in V.
(8) Consider any subset F of V.. If X\F # 0, then X\ F is a fan. If X—(X/F) #
0, then ¥ — (X/F) is a fan.
(9) For any subset X of |3|, the following three conditions are equivalent:
(a) X is a closed subset of V.
(b) X is a closed subset of |X|.
(¢) XN A is a closed subset of A for any A € X.
(10) For any subset Y of |3|, the following two conditions are equivalent:
(a) Y is an open subset of |3|.
(b) YNA is an open subset of A for any A € X.
(11) Consider any A € X. A € ™ 4f and only if, A° is an open subset of
||
(12) Consider any L € X. The following five conditions are equivalent:
(a) L is the minimum element of ¥, in other words, dim L < dim A for
any A € X.
(b) L C A for any A € 3.
() L=AN(=A) for any A € X.
(d) L=AnN(=A) for some A € 3.
(e) L is a vector subspace over R of V.
There exists a unique element L € ¥ satisfying the above five conditions.

e

Below, we assume that L € ¥ is the minimum element of X.

(13) Zaimr = {L}. X # 0, if and only if, dimL < i < dim X for any i € Z.
Yt £ 0, if and only if, 0 < i < dimX — dim L for any i € 7Z.
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(14) L = An(=A) € F(A), A+L = A, A°+L = A° and vect(A)+ L = vect(A)
for any A € X.

(15) X is strongly convex, if and only if, L = {0}, if and only if, {0} € X.

(16) X is rational over N, if and only if, any A € ¥ with dim A < dim L+ 1 is
rational over N.

Below, we consider any vector space W of finite dimension over R and any homo-
morphism m:V — W of vector spaces over R satisfying m=1(0) C L.

(17) The push-down m.% is a fan in W, and m* 7,2 = X.
(18) For any A € &, m(A) € w2, For any A € w2, 77 1(A) € 3.

The mapping from 3 to m.% sending any A € 3 to w(A) € m. X and the
mapping from 7,3 to ¥ sending any A € 1,2 to 71 (A) € ¥ are bijective
mappings preserving the inclusion relation between X and w3, and they
are the inverse mappings of each other.

Furthermore, if A € ¥ and A € 7% correspond to each other by them,
the following equalities hold:

° =nm(A°), 771(A°) = A°.

A
F(A) = m.F(A), T F(A) = F(A).
Lemma 8.5. Let ¥ be any simplicial fan in 'V and let H € ¥ be any element.
Assume X is starry with center in H, in other words, ¥ = (X/H ).

Let W = V/vect(H) denote the residue vector space of V' by vect(H) and 7 :
V — W denote the canonical surjective homomorphism of vector spaces over R.

(1) The push-down w.% is a simplicial fan in W. dim7,>X = dim ¥ — dim H.

(2) If ¥ is rational over N, then w(N) is a lattice in W and 7.% is rational
over m(N). If ¥ is regular over N, then w(N) is a lattice in W and m, X is
regular over w(N). If ¥ is flat, then w3 is flat.

Lt S ={AeS|ANH={0}}C¥x.

(3) ¥ is a simplicial fan in V. dim Y = dimY — dim H. If ¥ is rational over
N, then ¥ is rational over N. If ¥ is reqular over N, then Y is reqular
over N.

(4) For any A€ X, n(A) €Y. Forany A€ X, 77 1(A)N || € X.

The mapping from ¥ to m.% sending A € ¥ to m(A) € 7n.% and the
maping from w3 to & sending A € ¥ to 7Y (A) N |Z| € ¥ are bijective
mapping preserving the inclusion relation and the dimension between Y. and
w2, and they are the inverse mappings of each other.

(5) 7(|Z]) = #(|Z]) = |7.2|. 7w(vect(|Z])) = m(vect(|X])) = vect(|m.X|). The

mapping 7 : |X| — |7 X| induced by 7 is a homeomorphism.

Consider the product vector space W X vect(H). Let
mIXF(H) ={A x A|JA € 7,3, A € F(H)}.

(6) TXxF(H) is a simplicial fan in W x vect(H). dim m, XX F(H) = dim X.
(7) If X is rational over N, then w(N)x (NNvect(H)) is a lattice in W xvect(H)
and 7. XX F(H) is rational over w(N) x (N Nvect(H)). If ¥ is regular over
N, then w(N) x (N Nvect(H)) is a lattice in W x vect(H) and m. XX F(H)
is regular over w(N) x (N Nvect(H)). If ¥ is flat, then m.XxF(H) is flat.



NEW IDEAS FOR RESOLUTION OF SINGULARITIES 49

(8) For any A€ X, n(A) x (ANH) € m.XxF(H).
The mapping from X to m. X xF(H) sending A € ¥ to n(A) x (ANH) €
T DX F(H) is bijective, it preserves the dimension, and itself and its inverse
mapping preserve the inclusion relation.
(9) Assume dim H = 1.
L =%~ (X/H). dm(Z - (X/H)) =dimX - 1.
For any A € ¥/H, H € F(A); and H°?|A € ¥ — (X¥/H). For any
AeXY - (X/H), A+ HeX/H.
The mapping from L/H to ¥ — (X/H) sending A € £/H to HP|A €
Y —(X/H) and the mapping from X—(X/H) to ¥/ H sending A € X—(3/H)
to A+ H € ©/H are bijective mappings preserving the inclusion relation
between X/H and ¥ — (X/H), and they are the inverse mappings of each
other.
Furthermore, if A € $/H and A € X — (X/H) correspond to each other
by them, then dim A = dim A + 1.
S = IS — (S/H)| UIS/HP. |S = (S/H)|0[S/HP =0.
ymex c ¥/H.

Lemma 8.6. Let ® be any non-empty finite set whose elements are convex poly-
hedral cones in V' satisfying the following two conditions Z:

(a) ANA is a face of A, and AN A is a face of A for any A € & and any
Aec .
(b) AN(=A)=AN(=A) for any A € ® and any A € .
Choosing any element A € ®, we put L = AN(—=A) C V. L does not depend on
the choice of A € ®. Put ¥ = ®f°.
(1) ¥ isa fan in V.
(2) £ . |T] = |B]. Tmax = pmax,
(3) L € X. L is the minimum element of X.
(4) If ® is simplicial, then X is simplicial. If ® is rational over N, then ¥ is

rational over N. If ® is reqular over N, then ¥ is reqular over N. If ® is
flat, then ¥ is flat.

Assume dimV > 2. Let S be any convex polyhedral cone in V with dim S > 2, let
m € Zy, let H be any mapping from {1,2,...,m} to the set of all vector subspaces
of V' of codimension one satisfying the following three conditions:

(¢) H(i) # H(j) for any i € {1,2,...,m} and any j € {1,2,...,m} with
i .
(d) vect(S) ¢ H(i) and H(i) N S° £ 0 for any i € {1,2,...,m}.
(e) Hi)NH(G)NS° =0 for any i € {1,2,...,m} and any j € {1,2,...,m}
with i # j.
(5) The difference S° — (Ujeq1,2,...,m}H (7)) is a non-empty open set of vect(S).
It has (m + 1) connected components. The closure of any connected com-

ponent of it is a convex polyhedral cone in V whose dimension is equal to
dim S.

Let ® denote the finite set whose elements are (m + 1) of closures of connected
components of S° — (Uieqi,2,...,.m}H (1)), Let Y =0F andlet L = SN (-9)N
(Nieg1,2,...,myH ().

(6) @ satisfies the above two conditions Z.
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(7) © is a flat fan in V. dim¥ = dim S. || = §. Lmax = 530 = &. L s the
miminum element of ¥. {A € LA° C §°} = {H(i)NS|i € {1,2,...,m}}.
150 = #{A € ZHA° C S°}+1=m+ 1. For any A € & with dim A <
dimV — 2, A C 9S. If S is rational over N and H(i) is rational over N
for anyi € {1,2,...,m}, then ¥ is rational over N.

Lemma 8.7. Let ¥, ® and U be fans in V.

(1) The following three conditions are equivalent:
(a) X is a subdivision of ®, in other words, for any A € X there exists
A e ® with A CA.
(b) For any A € X, there exists uniquely A € ® with A° C A°.
() IZ|C|®|, and if A€ X, A€ @ and A° N A° # ) then A° C A°.
(2) If X is a subdivision of ® and ® is a subdivision of ¥, then ¥ = ®.
(3) If X is a subdivision of ® and X is a subdivision of ¥, then X is a subdivision
of U.
(4) If ¥ is a subdivision of ®, then |X| C |P|.
(5) Assume that 3 is a subdivision of ®. For any A € ¥ and any A € ® the
following three conditions are equivalent:
(a) A° C A°.
(b) ACA, and ®/A C D/A.
(c) A°NA°#D
(6) IfAe X, Ae® and A° C A°, then A C A, and dim A < dim A.
(7) The following three conditions are equivalent:
(a) X is a subdivision of ® and |X| = |P|.
(b) |X] = |®| and for any A € ®, A° = Uaex, aocaoA°.
(c) 2] = 19| and |X — XmaX| D |§ — dmax|,
(8) Assume that ¥ is a subdivision of ® and |X| = |®|. For any A € ®, there
exists A € ¥ with A° C A°. For any A € ®™** there exists A € L™ with
A° C A°.
(9) Assume that X is a subdivision of @, |X| = |®|, A € X, A € ® and A° C A°.
A € XM= if and only if, A € @™ and dim A = dim A. dim ¥ = dim ®.
(10) If ¥ is a subdivision of ®, |X| = |®|, and P is flat, then X is flat.

Lemma 8.8. Let ¥ be any fan in V such that the support |X| of ¥ is a convex
polyhedral cone in V. By L € ¥ we denote the minimum element of X.
(1) X is a subdivision of F(|X|) and |X| = |F(|X])].

(2) dim X = dim |X| = dim vect(|3]). L™ =30, ¥ is flat.

(3) For any A € ¥™ A° C |3]°.

(4) For any A € ¥, A ¢ 0|%|, if and only if, A° C |Z|°.

(5) Consider any A € F(|X]). |ZE\A| = A. X\A is a subdivision of F(A) and

IS\A| = |F(A)]. dim(T\A) = dimA. (Z\A)™*>* = (Z\A)? = {ANAJA €

¥0 dim(ANA) =dimA}.

(6) Consider any A € 3. Take the unique A € F(|X|) with A° C A°. Then,
A e S\A, (B\A)™/A £ D, A= Nacmaymesal, and |S/A]+vect(A) =
|Z] 4+ vect(A) = |Z| + vect(A).

(7) LC|Z|IN(—=|Z]). dim L < dim(|Z| N (—|X])) < dim |Z].

(8) Assume dim¥ — dim L > 1. Consider any A € %1

vect(A) C vect(|X]), and dimvect(|X]) = dimvect(A) + 1. Let H*
and H®" denote the two connected components of vect(|X]) — vect(A). Let

3
4
5
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H' = clos(H®"), and let H" = clos(H°"). H' UH" = vect(|X]). HNH" =
vect(A).

We consider the case where A ¢ 9|X|. #(X°/A) = 2. Let A’ and
A" denote the two elements of X°/A. {A’ + vect(A), A" + vect(A)} =
{H',H"}, and A" + vect(A) # A" + vect(A).

We consider the case where A C 9|%]. #(X°/A) = 1. Let A’ denote the
unique element of £°/A. A’ +vect(A) = |X|+vect(A). |X]|+vect(A) = H’
or |X| + vect(A) = H”.

Lemma 8.9. Let J be any finite set and let ® be any mapping from J to the set
of all finite sets whose elements are convex polyhedral cones in V. For any j € J,
®(j) is a finite set whose elements are convex polyhedral cones in V.. We consider
the real intersection Njc;®(j) of ®(j),j € J. By definition

A
ﬂ O(j) = {A € 2V |A = NjesA(4) for some mapping A = J — 2V
jeJ

such that A(j) € ®(4) for any j € J} c 2V,

(1) Njes®(j) is a finite set whose elements are convex polyhedral cones in V.
(2) Njes®(j) is a subdivision of ®(j) for any j € J.
Let ¥ be any finite set whose elements are convex polyhedral cones in
V. If ¥ is a subdivision of ®(j) for any j € J, then ¥ is a subdivision of
Njes®(5)-
(3)

A
2@ =[]12G)
jeJ jeJ
(4) If J =0, then Nje ®(j) = {V}. Njes®() =0, if and only if, J # 0 and
®(5) =0 for some j € J.
(5) If ®(j) is a fan for any j € J, then Nje ®(4) is also a fan.
(6) If ®(j) is rational over N for any j € J, then N;c;®(j) is also rational
over N.
(7) For any subsets J',J" of J with JJUJ" =J and J' N J" =,

) 2G) = () 2GNA(() 26))-
jeJ jeJ jegr

(8) For any bijective mapping o : J — J

A A
) @) = () 20)-
JjeJ jeJ
Lemma 8.10. Let m € Z be any positive integer, and let ¥ be any mapping from
the set {1,2,...,m} to the set of all fans in V. For any i € {1,2,...,m}, X(i) is
a fan in V.
We denote R
S= (] =6 c2".
ie{1,2,...,m}
(1) S is a fan in V. |S] = Nieqa2,...my|200)]. If £(i) is rational over N for
any i € {1,2,...,m}, then ¥ is rational over N.
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(2) I is a subdivision of X(i) for any i € {1,2,...,m}.
Let @ be any fan in V. If ® is a subdivision of X(i) for any i €
{1,2,...,m}, then ® is a subdivision of %.
(3) Let L(j) € (j) be the minimum element of £(j) for any j € J. NjesL(j)
is the minimum element of ¥.

Let A be any element of 3.

(4) There exzists uniquely an element A(i) € (i) with A° C A(i)° for any
ie{1,2,...,m)}.

Below, we assume that A(i) € $(i) and A° C A(i)° for anyi € {1,2,...,m}.
(5) A C A(®3) for any i € {1,2,...,m}.
(6)
A= (] AG).

(7)

(8)
vect(A) =[] vect(A(i)).

i€{1,2,...,m}

(9) Consider any subset A of V.. A is a face ofA, if and only if, there exists
a mapping A : {1,2,...,m} — 2V such that A = Nie{1,2,....m}A(7) and A(i)
is a face of A(i) for any i € {1,2,...,m}.
Let A7) be any element of (i) for any i € {1,2,...,m}.
(10) The intersection Nicq1,2,....m}A(@) is an element of 3.
(11) If A C A(3) then A(i) C A(i), for any i € {1,2,...,m}.
(12) If

A= (] A®),

then A(i) C A(@) for any i € {1,2,...,m} and the following three conditions
are equivalent:
(a)
() AG)° #0.

i€{1,2,...,m}
(b) A(i) = A(@) for any i€ {1,2,...,m}.
(c)

A= () AG)”

i€{1,2,...,m}

Lemma 8.11. Let ¥ be any fan in V', let U be any vector space of finite dimension
over R, and let v : U — V be any homomorphism of vector spaces over R.

The pull back v*% of ¥ by v is a fan in U.
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9. CONVEX PSEUDO POLYTOPES

We study convex pseudo polytopes.
Let V be any vector space of finite dimension over R, and let N be any lattice
of V.

Lemma 9.1. Let S be any convex pseudo polytope in V', and let X and Y be any
finite subset of V' satisfying S = conv(X) + convcone(Y) and X # 0.

(1) stab(S) = convcone(Y'). stab(S) is a convex polyhedral cone in V. If S is
rational over N, then stab(S) is also rational over N.
(2) vect(stab(S)) C stab(affi(5)).
(3) The following four conditions are equivalent:
(a) S is a convex polytope.
(b) S = conv(X).
(c) stab(S) = {0}.
(d) S is compact.
(4) We consider the dual vector space V* of V' and the dual cone stab(S)Y =
stab(S)V |V C V* of stab(S).
For any w € V*, the following three conditions are equivalent:
(a) w € stab(S)V.
(b) There exists the minimum element min{(w,x)|x € S} of the subset
{{w, )|
x €8} of R.
(c) The subset {{w,z)|z € S} of R is bounded below.

Definition 9.2. Let S be any convex pseudo polytope in V. We consider the dual
cone stab(S)Y = stab(S)V|V C V* of stab(S).

(1) For any w € stab(S)V, we denote

ord(w, S|V) =min{{(w, z)|z € S} € R
Aw, S|V) ={z € S|{w,z) = ord(w, S|V)} C S.

When we need not refer to V or to the pair (S, V'), we also write simply
ord(w, S) or ord(w), A(w,S) or A(w) respectively, instead of ord(w, S|V),
Aw, S|V).

(2) Let F be any subset of S. We say that F' is a face of S, if F = A(w, S|V)
for some w € stab(S)V.

It is easy to see that any face F' of S is a closed convex subset of V', and
the dimension dim F' € Zg of F', the boundary OF of F, and the interior
F*° of F are defined.

Any face F of S with dim F' = 0 is called a vertex of S. Any vertex of S
is a subset of S with only one element. Any face F' of S with dim F =1 is
called an edge of S. Any face F' of S with dim F' = dim S — 1 is called an
facet of S. Any face F of S with F # S is called a proper face of S.

(3) By F(S) we denote the set of all faces of S.
For any i € Z, the set of all faces F' with dim F' = 4 is denoted by F(5);,

and the set of all faces F' with dim F' = dim S — 7 is denoted by F(5)*.



54 TOHSUKE URABE

(4) Let ¢ = dim(stab(S) N (—stab(S))) € Zg. We denote
C(S) Zﬂf(S)g S Zo,

V(S) = U FcCS,
FeF(S),

we call ¢(S) the characteristic number of S, and we call V(S) the skeleton
of S. We call any face F' of S with dim F' = ¢ a minimal face of S.
(5) Let F be any face of S. We denote

A°(F,S|V) ={w € stab(S)"|F = A(w, S|V)} C stab(S)" c V*,
A(F, S|V) ={w € stab(S)"|F C A(w, S|V)} C stab(S)¥ C V*.
We call A°(F, S|V) the open normal cone of F', and we call A(F,S|V)

the normal cone of F.

When we need not refer to V or to the pair (S, V'), we also write simply
A°(F,S) or A°(F), A(F,S) or A(F) respectively, instead of A°(F,S|V),
A(F, S|V).

(6) We denote

S(S|V) = {A(F, S|V)|F € F(S)} € 25b(5)" < oV

and we call 3(S|V) the normal fan of S.
When we need not refer to V, we also write simply 3(S), instead of
S(S|V).

Let W be any vector space of finite dimension over R containing V' as a vector
subspace over R with dimW =dimV + 1, and let z € W — V be any point.

Let w : V. — W denote the inclusion homomorphism. Putting #'(¢t) = tz € W
for any ¢ € R we define an injective homomorphism 7’ : R — W of vector spaces
over R.

For any a € W, choosing the unique pair b € V and ¢t € R with a = b+ tz
and putting p(a) = b and p'(a) = t we define homomorphisms p : W — V and
0+ W — R of vector spaces over R.

Putting ¢(w) = w(1) € R for any w € R* = Homg(R, R), we define an isomor-
phism ¢ : R* — R of vector spaces over R. For any w € R* and any ¢t € R we have
(w,t) = t(w)t. Below, using this isomorphism ¢ we identify R* with R. For any
t € R=R* and any u € R we have (t,u) = tu.

We have eight homomorphisms of vector spaces over R.

e V—->W, 7 R—=>W,
P W =V, o W =R,
™ W VR ™ W* SR,
ot Vo W o TR W*.

Four homomorphisms 7,7, p*, p’* are injective. The other four p, p’,7*, n'* are
surjective. We denote H =V 4+ Rpz C W and { = p'*(1) € W*.

Lemma 9.3. (1) pr =idy, p'n’ =idg, mp+7'p =idw, V =7(V) = p'~(0),
Rz = 7'(R) = p~(0), n'(1) = 2. For anyx € W, p'(x) = ((,2).
(2) W*p* — idV*, 77/*[)/* — idR, p*ﬂ_* _|_p/*ﬂ_/* — idW*, (Rz)v — p* V*)
)=

((,z) =1.
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(3) N + Zz is a lattice of W. H is a rational convex polyhedral cone over
N+Zz inW. dmH =dimW =dimV + 1. H = {z € W|p'(x) > 0}.
W =HU(—H)=vect(H) =vect(—H). V=HnN(—H) =0H = 9(—H).
z€ H* =V 4+Riz={zecWl|p(z) > 0}.

(4) (N + Zz)* = p*(N*) + Z{. HY is a simplicial cone over (N + Zz2)* in
W* with dim HY = 1. HY N (N + Zz)* = Zo¢. HY =Ro¢. VY = HV U
(—HY) =vect(HY) =vect(—H"). {0} = HYN(—HY)=0HY =9(—H").
—HY =(-H)".

Putting o(a) = p(a)/p’(a) € V for any a € H®, we define a mapping o : H®> — V.
Ifac H°, beV,t€Rand a=b+tz, then t >0 and o(a) = b/t.

Lemma 9.4. (1) o is surjective. For any a € H®, {o(a) + z} = (Rya) N
(V+1{z}) = Ra) N (V + {2}) and 0~ (c(a)) = Rya. For any b € V,
o b)) =Ry (b+ 2).
(2) Consider any convex polyhedral cone A in W satisfying A C H and AN
H° # () and any finite subset Z of H satisfying A = convcone(Z).
(a) o(ANH®) = conv(c(Z N H®))+ convcone(Z NV).
o(ANH?) is a conver pseudo polytope in V.
If A is rational over N + Zz, then o(A N H®) is rational over N.
dimA =dimo(ANH®)+1. ANV =stab(c(A N H?)).
(b) ANH®° =0"Y(c(ANH®?)). A=clos(c™(a(AN H®))).
(3) Consider any convex pseudo polytope S in V and any finite subsets X, Y
of V satisfying S = conv(X) + conveone(Y) and X # ().
(a) clos(c™1(S)) = convcone((X + {z})UY).
clos(c™1(S)) is a convex polyhedral cone in W. clos(c=1(S)) C H.
clos(c™1(S)) N H® # 0. clos(c71(S)) NV = stab(9).
If S is rational over N, then clos(o~*(S)) is rational over N + Zz.
(b) clos(e=1(S)) N H® = o~1(S). o(clos(c™1(S)) N H°) = S.
(4) For any subsets A, A of H satisfying ANH® # 0, ANH® # () and A C A,
o(ANH®) Co(ANH®).
For any non-empty subsets S, T of V satisfying S C T, clos(c=1(S)) C
clos(a=1(T)).
For any non-empty closed subsets S, T of V, SNT =0, if and only if,
clos(c=1(S)) Nclos(e=X(T)) N H® = 0.
(5) For any convex polyhedral cone A in W satisfying A C H and ANH® # (),
o(ANH®) is a convex pseudo polytope in V.
For any convez pseudo polytope S in V, clos(o=1(S)) is a convex poly-
hedral cone in W, clos(c=1(S)) C H and clos(c=*(S)) N H® # (.
The mapping sending any convex polyhedral cone A in W satisfying A C
H and AN H® # ( to o(AN H®) and the mapping sending any convex
pseudo polytope S in V to clos(c=1(S)) are bijective mappings preserving
the inclusion relation between the set of all convex polyhedral cones A in
W satisfying A C H and AN H® # 0 and the set of all conver pseudo
polytopes in V', and they are the inverse mappings of each other.
Furthermore, if a convex polyhedral cone A in W satisfying A C H and
ANH® #Q and a convex pseudo polytope S in V' correspond to each other
by them, then A = clos(c=1(S)), S = o(A N H°) and the following claims
holds:
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A is rational over N + Zz, if and only if, S is rational over N.
dim A > 1.
dim A =dim S + 1.
ANV = stab(9).
ANH® =0"%5).
ANV +{z})=5+{z}.
vect(A) N (V + {z}) = affi(S) + {z}.
vect(A)N H® = o~ ! (affi(S)).
o(vect(A) N H®) = affi(S).
vect(A) = vect(affi(S) + {z}).

AN H® = o 1(289).
A° = o1(8°).
7(A°) = S°.

Corollary 9.5. Consider any convex pseudo polytopes S, T in V.

If SNT # 0, then SNT is a convex pseudo polytope in V and stab(SNT) =
stab(S) N stab(T).

If S and T are rational over N and SNT # 0, then SNT is also rational over
N.

If S and T are convex polytopes and S NT # (), then SNT is also a conver
polytope.

If S and T are convexr polyhedral cones, then S NT is also a convexr polyhedral
cone.

Proposition 9.6. Let A be any convex polyhedral cone in W satisfying A C H
and AN H® # (0. We denote
L=AnN(-A) CA,
¢ =dim L € Zy,
S=c(ANH")CYV,
HY = HY|W Cc W*,
AY = AV|W Cc W*,
O_AY ={we AV|({w} +vect(HY))NAY c {w}+ HY} Cc AY,
F(A). ={A e F(A)ANH® # 0} C F(A),
F(AY)* = F(AV)\o-AY C F(AY).
(1) L= (ANV)N(—=(ANV)) = stab(S)N(—stab(S)) C V. L € F(A)—F(A)..
AeFA) #0. If A € F(A),, T € F(A) and A C T, then T € F(A),.
For any A € F(A), there exists ' € F(A)s such that A DT and dimT" =
£+ 1.
(2) HY C AY. —HY ¢ AV. AV+7*710) = (ANV)V|W = m*~L((ANV)V|V).
7 (AY) = (AN V)V|V = stab(S)V|V.
(3) 0 #£0_AV C AV =0_AYV + HY. 7*(0_AY) = stab(S)V|V. The mapping
™ O_AY — stab(S)V|V induced by 7 is bijective.
(4) For any face A of A the following three conditions are equivalent:
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(a) A e F(A)..
(b) A(A,A|W) € F(AY)*.
(c) A°(A,A|W)NI_AY £ 0.
(5) |[FAV)*|=0_AY. AV N (=AY) e F(AV)* #0. dim F(AY)* = dim AY —
1 = dimstab(S)Y =dimV — £. (F(AV)*)™ax = (F(AY)*)°.
(6) For any w € O_AV the following claims hold:
(a) A(w, A|W) € F(A)..
(b) ord(m ( )7S|V) :_<w72>'
(c) A(w, A|W)N H® = o HA(r* (w), S|V)).
(d) o(Aw, AW) N H®) = A" (w), S|V).
(7) For any A € F(A)., o(ANH®) € F(S5).

For any F € F(S), clos(c7(F)) € F(A)..
The mapping from F(A). to F(S) sending A € F(A). to c(ANH®) €
F(S) and the mapping from F(S) to F(A). sending F € F(S) toclos(c =1 (F)) €
F(A). are bijective mappings preserving the inclusion relation between F(A),
and F(S), and they are the inverse mappings of each other.
(8) Assume A € F(A)., F € F(S), F = o(AN H®) and A = clos(c™(F)).
The following claims hold:
(a) F is a convex pseudo polytope in V. If S is rational over N, then F
is also rational over N. stab(F) is a face of stab(S).
(b) dimA =dim F + 1.
(c) A°(A,A|W) C A(AA|W) C H_AVY.
(d) A(F,S|V) =a*(AA, AW)). 7 HA(F, S|V))NO-AY = A(A, A|W).
A(F,S|V) is a convex polyhedral cone in V*.
(e) A°(F,S|V) =n*(A°(A, A|W)). 7*~LH(A°(F, S|[V))NO_AY = A°(A, A|W).
A°(F,S|V) = A(F, S|V)°.
(f) vect(A(A, A|W)) N7*=1(0) = {0}. vect(A(F,S|V)) =
7 (vect(A(A, A|W))) = stab(affi(F))V|V.
(9) For any A* € F(AV)*, m*(A*) € X(S|V).
For any A* € X(S|V), 7Y A*) NO_AY € F(AV)*.
The mapping from F(AY)* to X(S|V) sending A* € F(AV)* to n*(A*) €
Y(S|V) and the mapping from %(S|V) to F(AV)* sending A* € 2(S|V) to
T L (A*) N O_AY € F(AY)* are bijective mappings preserving the dimen-
sion and the inclusion relation between F(AV)* and X(S|V'), and they are
the inverse mappings of each other.
(10) The normal fan 3(S|V) of S in V is a fan in V*. |2(S|V)| = stab(S)V|V.
If S is rational over N, then X(S|V) is rational over N*.
(11) For any F € F(S), vect(A(F,S|V)) = stab(afi(F))V|V and dim F +
dim A(F,
S|V)=dimV.
For any F € F(S) and G € F(S), F C G, if and only if, A(F,S|V) D
A(G, S|V).
The mapping from F(S) to X(S|V) sending F € F(S) to A(F,S|V) €
Y(S|V) is a bijective mapping.
(12) The function ord( ,S|V) : stab(S)V|V — R sending @ € stab(S)V|V to
ord(w, S|V) € R is a piecewise linear convex function over L(S|V).

If S is rational over N, then this function ord( ,S|V) is rational over
N*.
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(13) Denote
E(X(S|V),ord(,S|V)) = {€ € W*|§ = p(@) + t¢ for some & € |E(S|V)]
and some t € R with t > —ord(@, S|V)}.

Then, E(X(S|V),ord( ,S|V)) = AY, Z(Z(S|V),ord( ,S|V))V|W* = A,
and o((E(X(S|V),ord(, S|V))V|W*)NH®) = S.

Proof. We give only the proof of 4.

Since L C V = {z € W|((,z) =0}, (¢,b) =0 for any b € L.

Consider any face I' of A with dimI" = ¢ + 1. We take any point ep € I' — L.
We have I' = Roer + L. Since ep € I' C A C H = {x € W|((,x) > 0}, (C,er) > 0.

We know A = Zfef(A)Hl Roer + L. Take any point a € AN H® # (. a €
A = ZFGJ:(A)5+1 Roer + L. Take any function ¢ : F(A)py1 — Rp and b € L
with @ = 3"pc 7(a),,, t(D)er +b. Since a € H® = {z € W[((,2) > 0}, 0 < ((,a) =
dorera)e,, LN er)+H (G b) = Yorer(a),,, tI){C, er). We know that there exists
I'e ]:(A)g_H with <C,6F> > 0.

Consider any face A of A. We know A =} e 7(a),, ,\a Roer + L.

(a) = (b). Assume (a). AN H® # (. Take any point a € AN H°. Since a €
H® ={z e W[(,2) >0}, (C,a) > 0. a € A =3 rc7(a),, \a Roer + L. Take any
function ¢ : F(A)e41\A = Ro and b € L with a = 3 7 a),, \a tTer +0. 0 <
(¢a) = Zre}'(A)Hl\A tI)(¢,er) + (¢, b) = ZFGF(A)[+1\A t(I){¢, er). We know
that there exists I' € F(A)g41\A with (C,er) > 0. We take any I' € F(A)p41\A
with ((,er) > 0.

Note that HY = Ro¢ and vect(H) = R(.

Consider any w € A(A, A|W). er € T' C A C A(w, A|W). (w,er) =0.

Consider any x € ({w} + vect(H))NAY. Take t € R with x = w +¢(. Since x €
AV ander e I' C A C A, we have 0 < (x,er) = (w+ t(,er) = (w,er) + t{C,er) =
t(C,er). Since (¢,er) >0, we know t > 0 and x =w + ¢ € {w} + Ro¢ = {w} + H.

We know ({w} + vect(H)) NAY C {w}+ H and w € _AV.

We know A(A, A|W) C d_AY and A(A, A|W) € F(AV)*.

(¢) = (a). Assume (a) does not hold. ANH° = 0. Since A C A C H, AC
H—-H° =0H =V = {x € W|{{,a) = 0}, and (¢,a) = 0 for any a € A. In
particular, ((,er) = 0 for any I' € F(A)g1\A. If T' € F(A)gy1 and (¢, er) > 0,
then I' Z A.

Consider any w € A°(A,A|W). w € AV, Since L C A = A(w, A|W), {w,b) =0
for any b € L. Consider any I" € F(A)gy1. T C A, thener € ' C A = A(w, A|W)
and (w, er) = 0. It is easy to see that if I' ¢ A, then (w,er) >0

Consider any ¢ € R. For any b € L we have (w+1¢(,b) = (w,b)+¢((,b) = 04+1t0 =
0. For any I € F(A)gy1, (w+t¢,er) = (w,er) + (¢, er). w+t{ € AV, if and only
if, (w,er) +t({,er) > 0 for any I" € F(A)p41.

Consider any T' € F(A)p11. I T C A, then (w,er) + t(¢,er) = 0+ t0 = 0.
T ¢ A and ((,er) = 0, then (w,er) + t(¢,er) = (w,er) > 0. We consider
the case I' ¢ A and (C,er) > 0. We have (w,er) > 0, —(w,er)/{C,er) < 0 and
(w,ery +t{¢,er) > 0, if and only if, ¢ > —(w, er)/{(,er). Put

<w,ep)
<<,€f‘>
to < 0and w+t¢ € AV, if and only if, t > tg for any t € R.

to = max{— T € F(A)ps1,{C,er) >0} € R.
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Since vect(H) = R¢ and H = Ro¢, we know {w + (|t € R,t > to} = ({w} +
vect(H)) NAY ¢ {w} +Ro¢ ={w} + H, and w € d_AV.

We know A°(A, A[W)NI_AY = . Claim (c) does not hold.
(b) = (c). Trivial.

Lemma 9.7. Denote
X (V) = the set of all convex pseudo polytopes in V,
X (V,N) = the set of all rational convex pseudo polytopes over N in V,
Y(V)={(%,9)|X is a fan in V* such that the support |Z| of X is a convex
polyhedral cone in V* and there exists a piecewise linear convex
function |X| = R over £, ¢ : |X| = R is a piecewise linear convex
function over ¥},

Y(V,N) ={(%,9)|X is a rational fan over N* in V* such that the support |X| of
Y is a convex polyhedral cone in V* and there exists a piecewise
linear function |X| — R which is convexr over ¥ and rational over
N* ¢ :|X| = R is a piecewise linear function which is convex over
Y and rational over N*}.

X(V,N)Cc X(V). Y(V,N) C Y(V). Putting ®(S) = (2(S|V),ord(,S|V)) € Y(V)

for any S € X, we define a mapping ® : X(V) — Y(V). @ induces a mapping

@' X(V,N) = Y(V,N).

For any (X, ¢) € Y we denote
E(X,0) = {€ e W7 = p*(@) + tC for some @ € |X| and some t € R
with t > —¢(@)}.
(1) Consider any (X, ¢) € Y(V).

E(X2, ) is a convex polyhedral cone in W*. HY C 2(X,¢). —HY ¢
2(Z, 9).

2(X, )V |W* is a conver polyhedral cone in W. Z(X,¢)Y|W* C H.
(E(E, )W) NH® #0. o((E(Z, )W) NH") € X(V).

If (3, ¢) € Y(V,N), then Z(X%, @) is rational over (N+Zz)*, (%, @)Y |W*
is rational over N + Zz and o((E(X,¢)V|W*)N H®) € X(V,N).

Putting U(%, ¢) = a((E(X, @)V |W*)NH®) € X(V) for any (X, ¢) € Y(V), we define

a mapping ¥ : Y(V) — X(V). ¥ induces a mapping V' : Y(V,N) — X(V,N).

(2) ® and U are bijective mappings, and they are the inverse mappings of each
other.

@’ and V' are bijective mappings, and they are the inverse mappings of
each other.

Remark . Assume dim V' = 3. There exists a rational fan ¥ over N* in V* such
that |X| = V* and there does not exist a piecewise linear convex function || — R
over X.

See Fulton [8] page 71, Cox [7] page 183.

Theorem 9.8. Let S be any convex pseudo polytope in V, and let X, Y be any
finite subsets of V' satisfying S = conv(X) + conveone(Y) and X # 0. We consider
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the dual cone stab(S)Y = stab(S)V|V C V* of stab(S). For simplicity we denote
s=dim S € Zy, L = stab(S) N (—stab(S)) C stab(S), £ = dim L € Zy.

(1) We consider any vector space U of finite dimension over R with dim S <
dimU < dimV, any injective homomorphism v : U — V of vector spaces
over R, any point a € V such that S C v(U) +{a}, and any subset F' of S.
Putting v(z) = v(z) +a € V for any x € U we define an injective mapping
v:U— V. SCuU). The inverse image v=1(S) is a convex polyhedral
cone in U. The set F is a face of S, if and only if v~ (F) is a face of
v=H(9).

(2) We consider any vector space W of finite dimension over R with dimV <
dim W, any injective homomorphism w : V. — W of vector spaces over R,
any point b € W and any subset F' of S. Putting T(x) = w(z) + b for any
x € V we define an injective mapping © : V. — W. The image 7(S) is a
convez polyhedral cone in W. The set F is a face of S, if and only if 7(F)
is a face of ©(S).

(3) Assume that S is a convex polyhedral cone. For any subset F of S, F is
a face of the convexr pseudo polytope S, if and only if, F is a face of the
convex polyhedral cone S.

4) L<s. t=s< L+{a} =8 for someacV < S =affi(9).

(5) Let F be any face of S.

(a) F is a convex pseudo polyhedron in V. stab(F') is a face of stab(S).

(b) If w € stab(S)Y and F = A(w, S), then stab(F) = A(w, stab(S)).

(c) stab( ) = conveone(Y Nstab(F)). vect(stab(F)) = vect(Y Nstab(F)).

(d) F =conv(X NF)+stab(F) = Snaffi(F). affi(F) = afi(X N F) +
vect(stab(F)).

(e) If S is rational over N, then F' is also rational over N.

(f) L =stab(F)N(—stab(F)) C stab(F) C vect(stab(F)) C stab(affi(F)).
¢ < dimstab(F) < dim F < s.

(g) Let G be any face of S with G C F. We have dim G < dim F'. dim G =
dim F', if and only if, G = F.

(h) Let G be any subset of F. G is a face of the convex pseudo polyhedron
F, if and only if, G is a face of S with G C F.

(6) F(S) is a finite set. S € F(S)s and F(S)s = {S}. S contains any face of
S. For any i € Zo, F(S); # 0 if and only if £ < i < s. The characteristic
number ¢(S) of S is equal to §F(S)e. ¢(S) is a positive integer.

(7) L = convecone(Y N L) =vect(Y NL).

Any face G of S with dim G = € is an affine space in V with stab(G) = L.

For any face F' of S and any face G of S with dimG = ¢, F D G, if and
only if, FNG # 0.

For any faces F, G of S with dimF = dimG = ¢, F = G, if and only
if, FNG # 0.

For any face F of S, there exists a face G of S such that dim G = ¢ and
F>dG.

Consider any face G of S with dim G = ¢ and any point w € vect(stab(S)VY).
The function (w, ) : G — R sending x € G to (w,x) € R is a constant func-
tion on G.

(8) The skeleton V(S) of S is a non-empty closed subset of S with finite con-
nected components. Any connected component of V(S) is an affine space G
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in V with stab(G) = L. The set of connected components of V(S) is equal
to F(S)e. The number of connected components of V(S) is equal to ¢(S).
For any point w € vect(stab(S)Y), the function (w, ) : V(S) — R sending
x € V(S) to (w,z) € R is constant on each connected component of V(S),
and this function has only finite number of values.
For any face F of S, the intersection F NV(S) is non-empty and union
of some connected components of V(S).

(9) Let F and G be any face of S with F C G. We denote f = dim F and g =
dimG. £ < f < g <s. There exist (s—{+1) of faces F(£), F({+1),...,F(s)
satisfying the following three conditions:

(a) Foranyie{l,0+1,...,s—1}, F(i) C F(i+1).

(b) Foranyie€ {{,0+1,...,s}, dim F(i) = .

(©) F(f) = F,Flg) = G, F(s) = 5.

et F' be any face of S.

a) F=0FUF°. OFNF°=1.

b) F°=F & 9F =0 < dim F = (.

)

OF = U G.

GeF(F)—{F}

(d) F° is a non-empty open subset of affi(F'). For any a € F° and any
be F conv({a,b}) — {b} C F°. F° is convex. clos(F°) = F.
(11) For any face G of S with dim G = £ we take any point ag € G.
(a) S = conv({ag|G € F(S)¢}) + stab(S).
(b) For any w € vect(stab(S)Y), {{(w,z)|lx € V(S)} = {{w,ac)|G €
F(S)e}-
(c) For any w € stab(S)Y, ord(w, S|V) = min{{(w, ag)|G € F(S)¢}.
(d) For any face F' of S, F = conv({ag|G € F(S)¢, G C F}) + stab(F).
(12) Consider any m € Zi and any mapping F : {1,2,...,m} — F(S). If
Nie{1,2,...m}F (1) # 0, then the intersection Nicq1,2,...m}F(i) is a face of S.
(13) Any proper face F of S is the intersection of all facets of S containing F.
(14) The normal fan 2(S|V) of S is a fan in V*. |2(S|V)| = stab(S)V. dim X(S|V) =
dimstab(S)Y = dimV — £. ¢(S) = #%(S|V)°. If S is rational over N,
then %(S|V) is rational over N*. The minimum element of X(S|V) is
A(S,S|V). A°(S,S|V) = A(S, S|V) = stab(affi(S))V|V. dimA(S, S|V) =
dimV —s.
For anyi € Z, X(S|V); # 0 if and only if dimV — s < i < dimV — ¢,
and S(S|V)t # 0 if and only if 0 <i < s—£.
(15) Let F be any face of S.
(a) A(F,S|V) e X(S|V).
(b) vect(A(F, S|V)) = stab(affi(F))"|V.
(¢) dim F + dim A(F, S|V) = dim V.
(d) A°(F,S|V)=A(F,S|V)°.
(e) A(F,S|V) = clos(A°(F,S|V)).
(f) A°(F,S|V) C A°(stab(F),stab(S)|V) € F(stab(S)Y).
(16) For any faces F,G of S, F C G, if and only if, A(F,S|V) > A(G, S|V).
The mapping from F(S) to X(S|V) sending F € F(S) to A(F,S|V) €
3(S|V) is a bijective mapping such that itself and its inverse mappings are
reversing the inclusion relation.
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(17) Consider any two faces F,G of S. The following four conditions are equiv-
alent:
(a) FCQG.
(b) F°NG # 0.
(c) A(F) D A(G)
(d) A(F)NA°(G) # 0.

The following siz conditions are also equivalent:

A .
A°(F )ﬂAO(G) #0.
(18) ¢(S) = #X(S|V)° = §F(S), = the number of connected components of
V(S) e Zy.
(19) The following three conditions are equivalent:
(a) c(5) =1.
(b) 3(S|V) = F(stab(S)V).
(c) S ={a}+stab(S) for somea € V.
(20) The family {F°|F € F(S)} of subsets of S gives the equivalence class de-
composition of S, in other words, the following three conditions hold:
(a) F° #0 for any F € F(S).
(b) F° = G°, if and only if, F° N G° # O for any F € F(S) and any
G € F(9).
(c)
U F°.
FeF(s
(21) The family {A°(F)|F € F(S)} of subsets of stab(S)Y gives the equiva-
lence class decomposition of stab(S)Y, in other words, the following three
conditions hold:
(a) A°(F) # 0 for any F € F(S).
(b) A°(F) = A°(Q), if and only if, A°(F)NA°(G) # 0 for any F € F(S)
and any G € F(S).
(c)
stab(S U A°(F
FEF(S)
(22) The function ord( ,S|V) : stab(S)Y — R sending w € stab(S)Y to ord(w, S|
V) € R is a piecewise linear convex function over L(S|V).
If S is rational over N, then this function ord( ,S|V) is rational over
N*.
(23) Let m = dim A(S) € Zg. m =dimV —s. For any A € (S|V)m41 we take
any point wy € A — A(S). Then,

S = ﬂ {z € V|{w,x) > ord(w, S|V)} N affi(S)
weEstab(S)V

= m {z € V|{wa,z) > ord(wy, S|V)} N affi(S).
AES(S|V)mi1
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(24) Consider any vector space W of finite dimension over R and any homo-
morphism 7 : V. — W of vector spaces over R. The image 7(S) is a convex
pseudo polytope in W, and 7(S)° = 7(S°).

If S is a convex polytope in V, then w(S) is a convex polytope in W. If
S is a convex polyhedral cone in V, then w(S) is a convezx polyhedral cone
in W.
Lemma 9.9. Consider any convex pseudo polytopes S, T in V.

S+ T is a convex pseudo polytope in V, stab(S + T) = stab(S) + stab(T),

stab(S + T)V = stab(S)Y Nstab(T)V, and (S + T|V) = S(S|V)OX(T|V).

If S and T are rational over N, then S+ T is also rational over N.

If S and T are convex polytopes, then S + T is also a convex polytope.

If S and T are convex polyhedral cones, then S + T is also a convex polyhedral

cone.

Corollary 9.10. Consider any convex pseudo polytope S in V and any convex
polyhedral cone A in V.

S+ A is a convex pseudo polytope in V, stab(S + A) = stab(S) + A, stab(S +
A)V = stab(S)V NAY and (S + A|V) = B(S|V)NF(AY|V).

If S and A are rational over N, then S + A is also rational over N.

S C S+ A. For any w € stab(S + A)Y, we have w € stab(S)Y, ord(w, S) =
ord(w, S+ A), and A(w, S) = A(w,S+A)NS.
Lemma 9.11. Consider any rational simplicial cone A over N in V with dim A =
dim V' and any subset X of V' such that X C ({a} +A)N(1/m)N for some a € V
and some m € Z.

There exists a finite subset Y of X satisfying conv(X)+ A = conv(Y) + A, and
conv(X) + A is a rational convex pseudo polytope over N in V.

Remark . The subset X of V' above is not necessarily finite.

Lemma 9.12. Let k be any field. Let A be any complete regular local ring such that
dim A > 1, A contains k as a subring, and the residue field A/M(A) is isomorphic
to k as algebras over k. Let P be any parameter system of A. Let ¢ be any non-zero
element of A.

(1) The Newton polyhedron T (P, ¢) of ¢ over P is a rational convexr pseudo
polytope over map(P,Z) in map(P,R). stab(T'y (P, ¢)) = map(P,Ry). I'y (P, ¢) C
map(P,Ry).

(2) The normal fan S(T4 (P, @) map(P,R)) of Ty (P,¢) is a rational fan over
map(P,Z)* inmap(P,R)*. |X(T 4 (P, ¢)map(P,R))| = map(P,Rg)"|map(P,R).

(3) The Newton polyhedron T (P, ) has a vertex. The skeleton V(T 1 (P, ¢))
of T1(P, ¢) is a non-empty finite subset of map(P,Zg), and V(I'y(P,¢)) is
the union of all vertices of T (P, ¢).

V(T (P, ¢)) ={a € T (P, ¢)| There exists w € map(P,Rg)" |map(P,R) such that

for any b € T4 (P, ¢) with (w,b) = (w,a), we have b = a}.
= the number of vertices of T4 (P, ¢).
(5) For any w € map(P,Ry)Y |map(P,R), we have
ord(P,w, ¢) = ord(w, T+ (P, ¢) [map(P,R)), and
in(P,w, ¢) = ps(P, A(w, '+ (P, ¢)|map(P, R)), ¢).
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(6) (T4 (P,¢)) =1, if and only if, ¢ has normal crossings over P.
(7) If dim A = 1, then ¢(T4 (P, ¢)) = 1.
(8) Ifp € A, w € A and ¢ = Yw, then
F-i-(Pv ¢) :1—‘+(va) + 1—‘+(P7w)7
L(C4 (P, ¢)lmap (P, R)) =X(I'y. (P, ))[map (P, R))AX(I'4 (P, w)[map(P, R)).

Let z € P be any element.

Let A" denote the completion of k[P — {z}] by the maximal ideal k[P — {z}] N
M(A) = (P —{z})k[P —{z}]. The ring A’ is a complete regular local subring of A
and M(A") = M(A)N A" = (P—{z})A’. The set P—{z} is a parameter system of
A

(9) Assume that T (P, ¢) is of z- Weierstrass type.
(a) If v € A, w € A and ¢ = Ypw, then both Ty (P,v) and T+ (P,w) are of
z-Weierstrass type.
(b) height(z, T+ (P, ¢)) =0 < Ty (P, ¢) has only one vertex < c(I'1 (P, ¢)) =
1 & ¢ has normal crossings over P.
(¢) The Newton polyhedron T'y (P, ¢) has a unique z-top vertez.
Below, by {a1} we denote the unique z-top vertex of ' (P, ¢). Let b =
ord(P, fFV ¢) € Zo and let h = height(z, T4 (P, ¢)) € Zo.
(d) Consider any a € T4 (P,¢). The equality (fFV, a) = ord(P, fFV, )
holds for any x € P — {2} & a —a; € Rofr.
(e) (fFV,a1) =b+h.
(f) There exist uniquely an invertible element u € A* and a mapping
¢ :{0,1,...,h =1} = M(A’) satisfying

h—1
o=u( [ #%0)LE" 30002,
reP—{z} =0
and ¢'(0) # 0 if h > 0.
(10) The following two conditions are equivalent:
(a) The Newton polyhedron T'y (P, ¢) is of z- Weierstrass type.
(b) There exist uniquely an invertible element w € A*, a mapping c :
P—{z} = Zy, and a z-Weierstrass polynomial ) € A over P satisfying

d=u H xc(m)w

zeP—{z}

(11) If dim A = 2, then T (P, @) is z-simple.

(12) If T (P, ¢) is z-simple, then T (P, @) is of z- Weierstrass type.

(13) Let r = c(T'+(P,¢)) € Z4. The Newton polyhedron I'y (P, @) is z-simple, if
and only if, the following three conditions are satisfied:
(a) For anya € V(I's (P, ) and any b € V(T'+ (P,8)), (f7¥,a) = (f7¥, 1),

if and only if, a =b.
Below we take the unique bijective mapping a : {1,2,...,r} = V('L (P,¢))

satisfying (fV,a(i)) > (fFV,a(i+1)) for anyi € {1,2,...,r—1}, if r > 2.
(b) For anyx € P—{z}, (fFV,a(2) —a(1)) >0, if r > 2.
(¢) Foranyie€ {1,2,...,r—2} and any x € P — {z},

(fiVai+1) —a() _ (fi,a(i+2) —a(i+1))
(f£Y,a(i) —ali+1)) = (fFY,ali+1) —a(i+2))’
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ifr > 3.
Furthermore, if the above equivalent conditions are satisfied, then the
following claims hold:
(d) There exists x € P — {z} with (fF'V,a(2) —a(1)) > 0.
(e) For anyie {1,2,...,7 —2}, there exists x € P — {z} with
U0+ 1) ~a@) _ (,ali+2) ~ ali+ 1)
(fEY,a(i) —a(i+1)) ~ (fFY,a(i+1) —a(i+2))’
ifr > 3.
(14) Assume that Ty (P,v) is z-simple. If ) € A, w € A and ¢ = Ypw, then both
Ty (P,v) and T (P,w) are z-simple.
(15) Assume that Ty (P, ¢) is of z- Weierstrass type. Let {a1} denote the unique

z-top vertex of T'1(P,¢). We take an invertible element u € A* and a
mapping ¢ : {0,1,...,h — 1} = M(A’) satisfying

h—1
(b:u( H $<ffvﬂal>)2b(2h+Z¢/(i)zi),
i=0

zeP—{z}

and ¢'(0) # 0 4fh > 0. Then, T (P, @) is z-simple, if and only if, there exist
positive integer r, and a mapping ¢ : {1,2,...,r} — map(P,Zg) satisfying
the following conditions:

(a) 1<r<h+1l.r=1<h=0.

(b) (1) = hfF. (¥, e(r)) = 0.

(c) For any i € {1,2,...,r — 1}, we have (fIV c(i) — c(i + 1)) > 0, if

r>2.
(d) For any x € P — {z}, we have

(£, e(2) = e(1)) 2 0,
if r > 2.
(e) There exists v € P — {z} with
(fYe(2) = (1)) >0,
if r > 2.

(f) For anyie {1,2,...,7r —2} and any x € P — {2z}, we have
(fovoelit1) —c(@) _ (fi7,e(i+2) —c(i+]1))
(fEV,e(i) —c(i+ 1)) = (fFV,e(i+1) = c(i +2))

if r > 3.

(g) For any i€ {1,2,...,r — 2}, there exists x € P — {z} with
(folseli+1) —ci)) _ (fa*eli+2) —ci+ 1))
(fEV,ei) —c(i+ 1))~ (fFVie(i+1) = (i +2))

if r > 3.
(h) For any i€ {2,3,...,r} and any x € P — {z}, we have
ord(P, ;. &' ({(fI7,e() = (f2", e(i),
if r > 2.
(i) For anyi€ {1,2,...,r — 1}, any j € Z with
(7Y eli+ 1)) < g < (fI7Y,eli)
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and any x € P — {z}, we have

ord(P, £V, ¢'(4)) >
(fEV e(i)) — j
(fEV (i) —c(i+1))
if r > 2.

J— Y e+ 1))

PV oe(i
(fa Tyeli+ 1) + (fPV,c(i) —c(i+1))

(f5Y,ci)),

10. STAR SUBDIVISIONS

We study star subdivisions of regular fans.

Let V be any vector space of finite dimension over R, let N be any lattice of V,
let ¥ be any regular fan over N in V' with dim ¥ > 1, and let F' € ¥ be any element
with dim F > 1. For simplicity we denote the barycenter bp/n of F' over N by b.
be F°NN.

Lemma 10.1. Consider any element A € ¥ satisfying A+ F € ¥ and F ¢ A.

(1) A+Rgb is a regular cone over N in V. Rob € F(A+Rgb)1. A € F(A+Rpb)!.
Rob M A = {0}. Rob = A°P|(A + Rob). A = (Rob)°P|(A + Rob).

(2) A+Rob C A+ F € X/F. (A+Rgb)° C (A+F)°. IfdimF = 1, then
Rob=F, and A+ Rob = A + F. Ifdim F > 2, then A + Rob # A + F.

(3) dim(A+Rgb) = dim A+1 < dim(A+F). A|(A+F) € F(F) C F(A+F).
dim(A°P|(A4F)) > 1. dim(A°|(A+F)) = 1 < dim(A+Rpb) = dim(A+F).

(4) For any A’ € F(A), we have N'+ F € %, and F ¢ N'. F(A) C (S/F)f —
(X/F).

(5) {A" +Rob|A" € F(A)} = F(A + Rob)/Rob C F(A +Rob). F(A) = F(A+
Rob) — (F(A + Rob)/Rob) C F(A + Ropb).

(6) For any A’ € ¥ — (X/F), we have (A +Rob) N A" = ANA" € F(A'), and
ANA" e F(A) C F(A+ Rpd).

Definition 10.2. We denote
YxF = (82— (X/F))U{A €2V|A = A+ Rgb for some A € ¥
satisfying A+ F € ¥ and F ¢ A} c 2V,

and we call ¥ % F' the star subdivision of ¥ with center in F', or the star subdivision
of X along F.

Lemma 10.3. (1) % F is a regular fan over N in V. X x F is a subdivision

of . Sk F| = |%]. dim Y * F =dim 3. If X7 = 30 then (X x F)max =
(X« F)°. If ¥ is flat, them X x F is also flat.

(2) Rob € (2% F)y. |2 * F/Rpb|° = |Z/F|°.

(3) (X% F)— (S % F/Rgb) = X — (X/F). Y% F/Rob = {A € 2V|A = A +
Rob for some A € 3 satisfying A+ F € X and F ¢ A}.

(4) If dimF = 1, then Rob = F € 1 and X« F = 3. Ifdim F > 2, then
Rob& ¥, X+« F #£ X%, (E*F)l :ElU{Rob}, andﬁ(E*F)l =1, + 1.

(5) Consider any A € ¥ * F/Rob. We denote A = (Rpb)°P|A € F(A).
(b)) A+F=A4+FecX A°C(A+F)° =(A+F)°.

(6) (BxEF)ymex— (L« F/Rpb) = M —(XZ/F). (TxF)™>*N(TxF/Rob) = {A €
2V|A = (E°P|A) + Rob for some E € F(F)1 and some A € ™% /F}.
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Example 10.4. Assume dimV > 3. Consider any regular cone S over N in V
with dim S = 3. Let E(1), E(2), E(3) denote the three edges of S. We denote
b(i) = bpw)n € E(i)°NN for any i € {1,2, 3} for simplicity. E(i) = Rob(i) for any

ie{1,2,3).
Put

T(1) = Rob(1) + Ro(b(1) + b(2)) + Ro(b(1) + b(3)),
T(2) = Rob(2) + Ro(b(2) + b(3)) + Ro(b(2) + b(1)),
T(3) = Rob(3) + Ro(b(3) + b(1)) + Ro(b(3) +b(2)),
T(4) = Ro(b(1) 4+ b(2) + b(3)) + Ro(b(1) + b(2)) + Ro(b(1) 4 b(3)),
T(5) = Ro(b(1) + b(2) + b(3)) + Ro(b(2) + b(3)) + Ro(b(2) + b(1)),
T(6) = Ro(b(1) + b(2) + b(3)) + Ro(b(3) + b(1)) + Ro(b(3) + b(2)).

For any i € {1,2,...,6}, T() is a regular cone over N in V with dim T'(i) = 3.

Let @ = Ujeqr2,.6)F (T(i)) C 2¥. @ is a regular fan over N in V. dim® = 3
and |®| = S. ® is a subdivision of the regular fan F(S) with |®| = |F(S5)|.

For any F € F(S)2, Robp/y € ®, and ® is not a subdivision of F(S)  F.

Robs/n € @, and @ is not a subdivision of F(S) x S.

11. ITERATED STAR SUBDIVISIONS

We study iterated star subdivisions of regular fans.
Let V be any vector space of finite dimension over R, let N be any lattice of V,
and let ¥ be any regular fan over N in V with dim¥ > 1.

Definition 11.1. Let m € Zy be any non-negative integer. We call a mapping
F from {1,2,...,m} to the set 2V of all subsets of V satisfying the following two
conditions a center sequence of X of length m:
(1) F(i)is aregular cone over N in V and dim F'(i) > 2forany i € {1,2,...,m}.
(2) There exists uniquely a mapping ¥ from {0,1,...,m} to the set of all
regular fans over N in V satisfying the following two conditions:
(a) £(0) =X.
(b) F(i) € £(i — 1) and %(i) = £(i — 1) x F(i) for any i € {1,2,...,m}.
Consider any m € Zy and any center sequence F' of ¥ of length m. There exists
uniquely a mapping ¥ from {0,1,...,m} to the set of all regular fans over N in V
satisfying the above two conditions (a) and (b). Since regular fan %(m) is uniquely
determined by ¥ and the center sequence F of ¥, we denote ¥(m) by the symbol

S F(1) % F(2) %% F(m),

and we call X x F(1) « F(2) x--- % F(m) the iterated star subdivision of ¥ along the
center sequence F' of X.

Consider any regular fan ® over N in V. If ® = ¥« F(1) « F(2) - -- x F(m)
for some m € Zy and some center sequence I’ of ¥ of length m, then we call ® an
iterated star subdivision of X.

Lemma 11.2. Consider any m € Zgy and any center sequence F' of ¥ of length m.
(1) X« F(1) « F(2) x---x F(m) is a reqular fan over N in V. dim X x F(1)
F2)*- -« F(m)=dimX. ¥ F(1)x F(2) -+« F(m) is a subdivision of

L. 2k F(1)x F(2) %% F(m)| = |3|. If 2™ = %0 then (¥ x F(1) *
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F2) - F(m))™ = (S +« F(1) * F(2) *--- % F(m))°. If ¥ is flat, then
YxF(1)x F(2)*---x F(m) is also flat.

(2) TxF1)«F(2)*---xF(m)=%, if m=0.

Ifm=1, then S« F(1)* F(2)*---x F(m) is equal to the star subdivision
Y F(1) of ¥ with center in F(1).

(3) If dimX =1, then m=0 and X« F(1) « F(2) % ---x F(m) = X.

(4) For anyi € {0,1,...,m}, the composition of the inclusion mapping
{1,2,...,i} = {1,2,....,m} and F : {1,2,...,m} — 2V is a center se-
quence of ¥ of lemgth i.

(5) Assume m > 1 and consider any i € {1,2,...,m}. dim F(i) > 2. F(i) €
YxF1)«F2)x---xF(i—1). F(i) C|X]. E«F1)« F(2)%---*x F(i —
M*xF@)=2«F(1)*« F(2) %% F(i).

(6) Assume m > 2 and consider any i € {1,2,...,m}. The mapping G :
{1,2,...,m—i} — 2V satisfying G(j) = F(i+j) foranyj € {1,2,...,m—i}
is a center sequence of XxF (1)« F(2)x- - -« F (i) of length m—i, and (X+F (1)
F2)x- -+« F0)«F(i+1)xF(i+2)*- -« F(m) = S« F(1)*« F(2)*- - - F(m).
{Robp@ynli € {1,2,...,m}} = 0. For any i € {1,2,...,m} and any
j S {1,2, .. .,m}, RObF(z)/N = RObF(])/N; Zf and OTLly Zf, ) :]

HE*xF(1)« F(2)*%---x F(m)); =X +m.

(8) For any ¢ € Zo and any center sequence G of L+ F(1)x F(2)x---x F(m) of
length £, the mapping H : {1,2,...,m+{£} — 2V satisfying H(i) = F(i) for
anyi € {1,2,...,m} and H(i) = G(i—m) for anyi € {m+1,m+2,...,m+
0} is a center sequence of ¥ of length m+£ and L« F (1)« F(2)%---x F(m) *
G(1)*G2)*---+Gl) = (B« F(1)x F(2)%-- -« F(m))*G(1)*G(2)*- - -x G ().

Consider any non-empty subset ® of ¥ satisfying ®© = &. ® is a regular fan

over N in V. |®| C |X].

(9) Let £ = #{i € {1,2,...,m}|F(i) C |®|} € Zo and let v : {1,2,--- L} —
{1,2,...,m} be the unique injective mapping preserving the order and sat-
isfying v({1,2,--- ,£}) ={i € {1,2,...,m}F(i) C |®|}.

The composition Fv is a center sequence of ® of length £, and ®x Fv(1)x
Fv(2)---«Fv(l) = (X« F(1)« F(2)*---« F(m))\|®| C X« F(1) x F(2) %
(10) If F(i) C |®| for any i € {1,2,...,m}, then the sequence F is a center
sequence of ® of length m, and ® x F(1) x F(2) % ---x F(m) = (X F(1) %
F2)x---x Fm))\|®| C X% F(1) « F(2) *--- % F(m).
(11) For any n € Zo and any center sequence G of ® of length n, the sequence
G is a center sequence of ¥ of length n, and ® x G(1) *x G(2) % -- - x G(n) =
(E*xG(1)*G(2) *---«Gn)\|®| C Z*G(1) * G(2) *--- x G(n).

Example 11.3. Assume dimV > 3. Consider any regular cone S over N in V
with dim S = 3. Let E(1), E(2), E(3) denote the three edges of S. We denote

b(i) = bp@)n € E(i)°NN for any i € {1,2,3} for simplicity. F(i) = Rob(i) for any

ie{1,2,3}.

Let

1) = Rob(1) + Rob(3), F(2) = Rob(2) + Rob(3),

Ro(b(1) +b(3)) + Rob(2), G(2) = Ro(b(2) +b(3)) + Rob(1).
im F(2) = dim G(1) = dim G(2) = 2.

F(
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We consider two mappings H and H from {1,2,3} to 2" satisfying (H (1), H(2),
H(3)) = (F(1),F(2),G(1)) and (H(1),H(2),H(3)) = (F(2), F(1),G(2)). Map-
pings H and H are center sequences of the regular fan F(S) of length 3.

F(S)«F(1)«F(2)«G(1) =F(S)* F(2) x F(1) *« G(2).
12. SIMPLENESS AND SEMISIMPLENESS

Simpleness and semisimpleness of fans or convex pseudo polytopes are important
concepts.

Let V be any vector space of finite dimension over R with dimV > 1, let V
be any lattice of V', let ¥ be any fan in the dual vector space V* of V such that
the support |X| of ¥ is a regular cone over the dual lattice N* of N in V* and
dim |¥| > 1, let H € F(|X|)1 be any edge of the regular cone |X|, let S be any
convex pseudo polytope in V such that [X(S|V)| = stab(S)V|V is a regular cone
over N* in V* and dim |2(S|V)| > 1, and let G € F(|2(S|V)|)1 be any edge of the
regular cone |X(S|V)|, where ¥(S|V) denotes the normal fan of S.

We denote L = stab(S)N(—stab(S)) = vect(|Z(S|V)])V|V* C Vand ¢ =dim L €
Zy. L is the maximum vector subspace over R in V' contained in stab(S). Recall
that V(S) = |F(S)e| denotes the skeleton of S.

Note that for any E € F(|X(S|V)|)1, any F € F(S)¢, any a € F and any
be F, EC|S(S|IV)| C vect(|2(S|V)]), and we have (bg/n+,a) = (bg/n+,b).
(Theorem 0.8 7.)

Definition 12.1. (1) We say that X is semisimple, if dimA > dim¥ — 1 for
any A € 3 with A° C |X|°.
(2) We say that ¥ is of H-Weierstrass type, if HP||X| € X.
(3) We say that ¥ is H-simple, if ¥ is semisimple and ¥ is of H-Weierstrass

type.
(4) We say that S is semisimple, if dim F' < £ + 1 for any face F' of S with
stab(F) = L.

(5) We say that S is of G- Weierstrass type, if there exists a face F of S with
A(F, S|V) = G°P||Z(S|V)].
(6) We say that S is G-simple, if S is semisimple and S is of G-Weierstrass
type.
(7) Let F € F(S), be any minimal face of S.
We say that F'is G-top, if (b n+,a) = max{(bg/n~,c)|c € V(S)} for
some a € F.
We say that F is G-bottom , if (bg/n+,a) = min{(bg/n~,c)|c € V(S)}
for some a € F.
(8) We define

height(G, S) = max{(bg/n+,c)|c € V(S)} — min{(bg/n+,c)|c € V(S)} € Ro,
and we call height(G, S) G-height of S.

Lemma 12.2. (1) S is semisimple, if and only if, X(S|V) is semisimple.
(2) S is of G-Weierstrass type, if and only if, X(S|V') is of G- Weierstrass type.
(3) Note that L C vect(G°P||Z(S|V))VIV* C V and dim vect(GP||E(S|V)|)
|[V* =£€+1. Let W = V/vect(G°P||Z(S|V)|)V|V* denote the residue vector
space, and let p : V. — W denote the canonical surjective homomorphism
of vector spaces over R to W.
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p(N) is a lattice in W, p(S) is a convex pseudo polytope in W, stab(p(.S))
is a regular cone over p(N) in W, and dimstab(p(S)) = dimW = dimV —
{—1.

S is of G-Weierstrass type < c¢(p(S)) = 1 & there exists ¢ € S satisfying
ord(bg/n=,S|V) = (bg/n+,c) for any E € F(|X(S|V)|)1 —{G}.

Assume that S is of G-Weierstrass type. S has a unique G-top minimal
face. ¢(S) =1, if and only if, height(G,S) = 0.

S is G-simple, if and only if, (S|V) is G-simple.

If dim |X| = 1, then X = F(|X]).

If dim |¥| < 2, then ¥ is H-simple.

If dim |X(S|V)| =1, then S = {a} + stab(S) for some a € S.

If diim [2(S|V)| < 2, then S is G-simple.

Let k be any field. Let A be any complete reqular local ring such that
dimA > 1, A contains k as a subring, and the residue field A/M(A) is
isomorphic to k as algebras over k. Let P be any parameter system of
A. Let z € P be any element. Let ¢ € A be any non-zero element. We
consider the Newton polyhedron T, (P,¢) in the vector space map(P,R).
(See Section[@.) Let G, =Ry fFV € F(map(P,Ro)"|map(P,R));.

Ty (P, ¢) is of z-Weierstrass type, if and only if, it is of G,-Weierstrass
type.

T (P, @) is z-simple, if and only if, it is G ,-simple.

height(z, T4 (P, ¢)) = height(G,, T+ (P, ¢)).

Let F € F(S)e be any mimimal face of S.

F is G-bottom < F C A(bg/n=,S|V) & G C A(F,S|V).

If F is G-top, then dim(A(F, S|[V)N(G°P||Z(S|V)])) = dim [E(S|V)| -1
and A(F,S|V) C (A(F,S|V) N (G°P||IZ(S|V)])) + G.

If 3 is semisimple, then 39 = §{A € X1|A° C |Z[°} + 1.

Let A be any regular cone over N* in V* satisfying A C |X| and dim A > 1.

If 33 is semisimple, then SNF(A) is also semisimple.

If ¥ is semisimple, then X\A is also semisimple for any A € F(|Z|) with

dimA > 1.

Assume that ¥ is of H-Weierstrass type. For any A € X9,

dim(A N (H°P||X])) = dim|X| — 1, if and only if, A D HP||Z|, and there

exists only one element A € X° satisfying these equivalent conditions.

If ¥ is of H-Weierstrass type, then X\A is also of H-Weierstrass type for

any A € F(|2])/H.

If ¥ is H-simple, then ¥\A is also H-simple for any A € F(|X|)/H.

Assume that ¥ is H-simple. We denote X' = {A € XY A° C |¥|°} U

). )

(a) HP||X] € & c L. 430 = ¢35

(b) We denote A < A, if A+H > A+H for any A € ¥° and any A € X0
Then, the relation < is a total order on X°.

(c) We denote A <A, if A+H D A+H for any A € £! and any A € B,
Then, the relation < is a total order on L

Letr =40 =42l € Z, .

We consider the total order on X° described in (b). Let A :{1,2,...,7} —
29 denote the unique bijective mapping preserving the order.
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We consider the total order on ©.! described in (c). Let A: {1,2,....,r} —
1 denote the unique bijective mapping preserving the order.

(d) Consider any i € {1,2,...,r} and any E € F(|X])1 — {H}. There
exists a unique real number ¢(X,i, E) € R depending on the pair (i, E)
satisfying bp/n+ + (3,1, E)by/n+ € vect(A(7)).

Below we assume ¢(3,i, E) € R and bg/n++c(X, 4, E)bg N+ € vect(A(i))
foranyie{1,2,...,r} and any E € F(|Z|)1 — {H}.

(e) Foranyie {1,2,...,r}, A(i) = convecone({bg /n-+c(Z, i, E)bg /-

F(S): - (H))).

E e

(f) For any T € &1, T = vect(T") N |3
(g) Forany E € F(|1X|)1 —{H}, ¢(X,1,E) =0.
(h) Ifr > 2, then ¢(2,i, E) < ¢(Z,i+ 1,E) for any i € {1,2,...,r — 1}

and any E € F(|2|)1 — {H}.
(i) Ifr>2and i € {1,2,...,7 — 1}, then ¢(2,i, FE) < ¢(X,i1+ 1, E) for
some E € F(|X|) — {H}.
(G) X i4s rational over N*, if and only if, ¢(X,i,E) € Q for any i €
{2,3,...,r} and any E € F(|2|)1 — {H}.
) If r > 2, then A(i) = A(i) + A(i + 1) for any i € {1,2,...,r —1}.
(1) A(r)=A(r)+ H.
m) {A € DA ¢ |F(S])/H]} = 0 U S
) A(1) = Ho?|[Z] c 9|%]. X°/A(1) = {A(1)}. B
For anyi € {2,3,...,7r}, A(i)° C |2]°, A(i) ¢ 9%, and X°/A(i) =
{AG—=1),A@)} B
(o) H C A(r). SN\A(r) = {A(r)}.
For anyi€ {1,2,....,r — 1}, H ¢ A(i), ZN\A®) = {A®), A +1)}.
(p) If r > 2, then A(i) NA(J) = A>i + 1) NA(j) for any i € {1,2,...,
r—1} and any j € {2,3,...,r} with i < j.
(q) Consider any w € vect(HP||X|).
Take the unique function @ : F(HP||Z|)1 — R satisfying w =
> per(Hor| ), @(E)bp/N+. Foranyi € {1,2,...,r}, put t(i) =
E€F(Hep||S|)1 @(E)C(E,i, E) € R.
(i) t(1)=0.
(ii) For any i€ {1,2,...,r}, the following claims hold:
(A) ({w}+Rbgn~) Nvect(A(i)) = {w + t(i)bu/n~}-
(B) w+t(i)bu/n- € A(i) & w € HP[|X].
(C) w+ tibryn- € Ali)° & w € (HP[[S])"
(iii) The following claims hold for any i € {1,2,...,r — 1}, if r > 2.
(A) Ifwe HP||X|, then t(i) < t(i +1).
(B) ({w} + Rbyw) 0 AG)

e if w & HP||%).

(C) Ifw € (HP||S|)°, then t(i) < t(i + 1).
(D) ({w} +Rbgn-) NA(E)°

i),
n

teR (@) <t<t(i+1)} ifwe HP|Y,

_ {wHtbgn-It € R t(i) <t <t(i+1)} ifwe (HP|X])°,
0 if w g (HP|[%])°
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(iv) ({w} +Rog/n-) N A(r)

0 if w g HP||X|.
(v) ({w}+Rbyn+) NA(r)°

B {{w +thyn-[t €RE(r) <t} if w € HOP||Y,

_ {w+tbgn-|t € R, t(r) <t} if we (HP|[X])°,
0 if w ¢ (HP[[X])°.

(r) Let w: vect(|Z|) — vect(HP||X|) denote the unique surjective homo-
morphism of vector spaces over R satisfying 7=1(0) = vect(H) and
7(x) =z for any x € vect(HP||X)).
7(|2]) = HOP||Z|. For any A € %, w(A) € F(HP||Z]), 7~ (m(A)) N
S| € F(S)/H.

For any A € ¥ with vect(H) C vect(A), dim7(A) = dim A — 1.
For any A € ¥ with vect(H) ¢ vect(A), dim7(A) = dim A.
For any A € X with A ¢ H°P||X|, A° C (7~ 1(w(A)) N [X])°.

(s) If A e 3, A € F(IX]), A° C A° and A ¢ H°P||X|, then H C A, and
dim A =dim A or dim A =dim A — 1.

IfA e, Ae F(X|), A° C A° and A C HP||Z|, then A = A and
dim A = dim A.
(16) Assume that ¥ is H-simple. Consider any A € F(|2])/H.

We use the same notations X', r, A and A as above. We denote Z\—A1 =
{T' e S\AI° C A°}U{H°P|A}.

(a) ref{ie{1,2,...,r}dim(AG)NA) =dim A} # 0.

Put 7 = #{i € {1,2,...,r}|dim(A(G) NA) = dimA} € Zy. Let v :
{1,2,...,7} = {1,2,...,r} be the unique injective mapping preserving the
order and satisfying v({1,2,...,7}) = {i € {1,2,...,r}dim(A@E) NA) =
dim A}.

(b) 1<7<r. v(F)=r.

() (VAP = BVA' = 7.

(d) (2\A)° ={Av(i)NAlie{1,2,...,7}}.

We consider the total order on (X\A)° described in 15.(b).
The bijective mapping {1,2,...,7} — (X\A)? sending i € {1,2,...,7}
to Av(i) N A € (X\A)® preserves the order.

(e) \A' = {Av(i)NAli € {1,2,...,7}}.

We consider the total order on L\A' described in 15.(c). The bijective
mapping {1,2,...,7} — S\A! sending i € {1,2,...,7} to Av(i)NA €
Y\A! preserves the order.

(f) For any j € Z with 1 < j <wv(1), A(j)NA = Av(1)NA.

For any i € {2,3,...,7} and any j € Z with v(i — 1) < j < v(i),
A(H)NA = Av(i)NA.
(g) Forany j € Z with 1< j<uv(1), A(j)NA=Av(l)NA.
For any i € {2,3,...,7} and any j € Z with v(i — 1) < j < v(3),
A(H)NA = Av(i)NA.
Consider any A € F(S)¢ and any E € F(|X(S|V)|)1. For any a € A, the real
number (bg/n+,a) does not depend on the choice of a € A and it depends only on
A and E. We take any a € A and we define (bg/n-,A) = (bp N+, a).
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(17) S is G-simple, if and only if, the following three conditions are satisfied:
(a) For any A € F(S); and any A € F(S)e, (bg/n+, A) = (bg/n+, A), if
and only if, A = A.

We assume that the first condition is satisfied. Let r = ¢(S). Let A :
{1,2,...,7} = F(S)¢ be the unique bijective mapping satisfying (bgn-, A(i—
1)) > (bg/n=, A7) for any i€ {2,3,...,7}, if r > 2.

(b) (s A@)) > (e, A for any B € F(S(SV)) — (G}, if
r>2.
(©)
(bp/N+, A()) — (bg/n=, A(i — 1)) < (bp/N+, Ali + 1)) — (bg/n-, A(i))
(ba/n+, A(i — 1)) = (bg/n~, A(9)) ~ (ba/n=, A(i)) — (ba/n+, A(i + 1))’

foranyie€ {2,3,...,r—1} and any E € F(|2(S|V))1—{G}, ifr > 3.
(18) Assume that S is G-simple. Let r = ¢(S) € Zy. Let A : {1,2,...,r} —

F(S)e be the unique bijective mapping satisfying (bg/n=, A(i—1)) > (bg/n+, A(1))

for any i € {2,3,...,r}, if r > 2.

We denote S(S|V)L = {A € Z(S|V)HA® C |S(S|V)[°YU{GP||E(SIV)|}
S(SIV)Y, and Ag = A(GP|IZ(SIV)|, |Z(S|V)||V*) € F(stab(S))es1. The
following claims hold:

(a) There exists E € F(|S(S|V)|)1 — {G} with (bg/n+, A(2)) > (b /N,
A)), if r > 2.

(b) For anyi € {2,3,...,r — 1} there exists E € F(stab(S)|V)1 — {G}
with

(bp/n+, A(i)) — (bp N+, A(i — 1)) < (bp/N+ A(i + 1)) — (b N+, A(7))
ey Al = 1)) — baynr AW}~ Baywe AG) — (b Al + 1))
ifr > 3.

(¢) A(1)+Ag € F(S)et1- stab(A(1)+Ag) = Ag. A(A(1)+Ag,S|V) =
GP||Z(S|V)| € (S|V)L.

If A € F(S)ey1 and stab(A) = Ag, then A= A(1) + Ag.

(d) conv(A(i — 1) U A(i)) € F(S)e+1, stab(conv(A(i — 1) U A(7))) = L,
A(conv(A(i—1)UA(4)), S|V) € £(S|V)!, and A(conv(A(i—1)UA()),
S|V C|Z(S|V)|® for any i€ {2,3,...,r}, ifr > 2.

IfAe F(S)ey1 and stab(A) = L, then r > 2 and A = conv(A(i —1)U
A(i)) for some i€ {2,3,...,r}.

(e) 2(S|V)L = {A(A(1)+ Ag, S|V)}U{A(conv(A(i — 1)U A(3)), S|V)|i €
{2,3,...,r}}.

(f) We define a bijective mapping A : {1,2,...,7} — X(S|V)! by putting
A1) = A(A(1) + Ag, S|V) and A(i) = A(conv(A(i — 1) U A(i)), S|V)
forany i€ {2,3,...,r}. Foranyi€ {1,2,...,r} and any E €
FZ(S|V))1—{G}, we take a unique real number c¢(X(S|V),i, E) € R
satisfying bp/n+ + c(2(S|V), i, E)bg N~ € vect(A(i)).

For anyi € {2,3,...,7}, A(i — 1)+ G D A®i) + G, if r > 2.
If we define a total order described in 15.(c) on (S|V)!, the mapping
A preserves the order.

For anyi € {2,3,...,7} and any E € F(|2(S|V)])1 — {G},

(b N+, A1) — (be N+, A(i — 1))
<bG/N*7A(i - 1)> - <bG/N*7A(Z)> ’

(2(S|V), i, E) =
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ifr > 2.

(19) Assume that S is of G- Weierstrass type. Let A be the unique G-top minimal
face and let ag € A be any point of A. We denote U = {a € V|(bg/n,a) <
(bg/n,a0)} and W = {a € V|(bg/n,a) = 0} = vect(G)"|V*. Let f € V be
any point of V. with (bg/n, f) = 1. We put

a— <bG/N7 CL>f
pla) (ba/n,a0) — (b /N> @) W
for any a € U and we define a mapping p: U — W.
(a) p(SNU) =0, if and only if, ¢(S) = 1.
Below, we assume ¢(S) > 2. Note that the normal fan X(S|V) of S is
of G-Weierstrass type and there exists uniquely A € %(S|V)° with A D
G°P||2(S|V)|. We take the unique A € X(S|V)° with A D G°P||Z(S|V)].
(b) p(SNU) is a convex pseudo polytope in W with stab(p(S NU)) =
stab(S) N W. If S is rational over N, then p(SNU) is rational over
NNW.
(c) c(p(SNU)) =1, if and only if, there exists a vector subspace X of V*
such that dim X = dim V-1, XN[X(S|V)|° # 0, XN(GP||Z(S|V)])° =
0 and A = (GP||Z(S|V)]) + (X N|Z(S|V))]).
(d) If S is G-simple, then c(p(SNU)) = 1.

Definition 12.3. Assume that ¥ is H-simple. We denote ! = {A € BlA° C
X7} U{HP[[Z]}
(1) We call X! the H-skeleton of .
(2) We call the total order on X9 described in Lemma [Z.2.15.(b) the H-order.
(3) We call the total order on 3! described in Lemma[M2.2115.(c) the H-order.
(4) We consider the H-order on %!, Let r = 5! € Z,. Let A: {1,2,...,7} —
! be the unique bijective mapping preserving the order.