Urabe Lab. |1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|Epilogueกก

ParametricPlot3D[
{(2 + 0.5 Cos[u]Cos[v]) Cos[v]Sin[v],
(2 + 0.3 Cos[u]) Sin[v],
0.5 Sin[u]Sin[v] + v/5},
{u, 0, 2 Pi},
{v, -3 Pi, 3 Pi},
PlotPoints -> {25, 100},
Boxed -> False,
Axes -> None]
ParametricPlot3D[
{1/3Cos[ u + 4] ,
Cos[u]Sin[v]Cos[v]Sin[u]Cos[v] + 1/2Cos[u],
Cos[v]Sin[u] Cos[u]Sin[v] },
{u, 0, 2Pi},
{v, 0, 2 Pi},
ViewPoint -> {1.300, -2.400, 2.000},
PlotPoints -> {50, 50},
Boxed -> False,
Axes -> None]
ParametricPlot3D[
{Sin[v]*Cos[u],
2*Cos[v],
4*Sin[v]*Cos[v]},
{u, -Pi, Pi},
{v, -Pi, Pi},
ViewPoint -> {4.749, -2.657, -0.450},
PlotPoints -> {25, 200},
Boxed -> False,
Axes -> None]
g1 = ParametricPlot3D[
{Sin[u]Tan[v],
Cos[u]Sin[v],
u - v},
{u, -Pi, Pi},
{v, -1.5Pi + 0.01, -0.5Pi - 0.01},
PlotPoints -> {50, 50},
DisplayFunction -> Identity];
g2 = ParametricPlot3D[
{Sin[u]Tan[v],
Cos[u]Sin[v],
u - v},
{u, -Pi, Pi},
{v, -0.5Pi + 0.01, 0.5Pi - 0.01},
PlotPoints -> {50, 50},
DisplayFunction -> Identity];
g3 = ParametricPlot3D[
{Sin[u]Tan[v],
Cos[u]Sin[v],
u - v},
{u, -Pi, Pi},
{v, 0.5Pi + 0.01, 1.5Pi - 0.01},
PlotPoints -> {50, 50},
DisplayFunction -> Identity];
Show[{g1, g2, g3},
Boxed -> False,
Axes -> None,
DisplayFunction -> $DisplayFunction]

Back to Tohsuke Urabe Laboratory


Send your opinions and comments to .