ParametricPlot3D[ {(2 + 0.5 Cos[u]Cos[v]) Cos[v]Sin[v], (2 + 0.3 Cos[u]) Sin[v], 0.5 Sin[u]Sin[v] + v/5}, {u, 0, 2 Pi}, {v, -3 Pi, 3 Pi}, PlotPoints -> {25, 100}, Boxed -> False, Axes -> None] |
ParametricPlot3D[ {1/3Cos[ u + 4] , Cos[u]Sin[v]Cos[v]Sin[u]Cos[v] + 1/2Cos[u], Cos[v]Sin[u] Cos[u]Sin[v] }, {u, 0, 2Pi}, {v, 0, 2 Pi}, ViewPoint -> {1.300, -2.400, 2.000}, PlotPoints -> {50, 50}, Boxed -> False, Axes -> None] |
ParametricPlot3D[ {Sin[v]*Cos[u], 2*Cos[v], 4*Sin[v]*Cos[v]}, {u, -Pi, Pi}, {v, -Pi, Pi}, ViewPoint -> {4.749, -2.657, -0.450}, PlotPoints -> {25, 200}, Boxed -> False, Axes -> None] |
g1 = ParametricPlot3D[ {Sin[u]Tan[v], Cos[u]Sin[v], u - v}, {u, -Pi, Pi}, {v, -1.5Pi + 0.01, -0.5Pi - 0.01}, PlotPoints -> {50, 50}, DisplayFunction -> Identity]; g2 = ParametricPlot3D[ {Sin[u]Tan[v], Cos[u]Sin[v], u - v}, {u, -Pi, Pi}, {v, -0.5Pi + 0.01, 0.5Pi - 0.01}, PlotPoints -> {50, 50}, DisplayFunction -> Identity]; g3 = ParametricPlot3D[ {Sin[u]Tan[v], Cos[u]Sin[v], u - v}, {u, -Pi, Pi}, {v, 0.5Pi + 0.01, 1.5Pi - 0.01}, PlotPoints -> {50, 50}, DisplayFunction -> Identity]; Show[{g1, g2, g3}, Boxed -> False, Axes -> None, DisplayFunction -> $DisplayFunction] |
Back to Tohsuke Urabe Laboratory