ParametricPlot3D[ {Cos[u]*Cos[v], Sin[2u]*Sin[2v], u/4}, {u, -Pi, Pi}, {v, -Pi, Pi}, PlotPoints -> {50, 50}, Boxed -> False, Axes -> None] |
ParametricPlot3D[ {2 Sin[Cos[2 t^2 + 1]]/(1 + u^2 + Sin[u]), -Log[t + Sin[t]], Cos[2 u/3]}, {t, π, 2 π}, {u, π, 2 π}, PlotPoints -> {50, 50}, Boxed -> False, Axes -> None] |
a = 5; b = 3; c = Sqrt[a^2 - b^2]; fx[s_, t_] := (a + b*Cos[t])Cos[s]; fy[s_, t_] := (a + b*Cos[t])Sin[s]; fz[s_, t_] := b Sin[t]; fxx[s_, t_] := (c*fx[s, t] + b*fz[s, t])/a; fyy[s_, t_] := fy[s, t]; fzz[s_, t_] := (-b*fx[s, t] + c*fz[s, t])/a; Do[ParametricPlot3D[ {fxx[s, t], fyy[s, t], fzz[s, t]}, {t, 0, 2Pi}, {s, -Pi, Pi}, PlotRange -> { {-(a + b + 1), a + b + 1}, {-(a + b + 1), a + b + 1}, {-(a + b + 1) + i, i} }, Boxed -> False, Axes -> None, PlotPoints -> {31, 61}, ViewPoint -> {0.934, -1.725, 2.757}], {i, b, -b, -1}] |
ParametricPlot3D[ {2Cos[u](1 + Cos[u]) + 5(1 - Cos[u]/2)(Cos[v + Pi]), 3Sin[u],8(1 - Cos[u]/2)Sin[v]}, {u, 0, 2Pi}, {v, 0, 3Pi}, PlotPoints -> {60, 50}, Boxed -> False, Axes -> None] |